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Basics



Linear Diophantine Equations Basics

A linear Diophantine equation is of the form:

𝑎𝑥 + 𝑏𝑦 = 𝑐 where 𝑎, 𝑏, 𝑐 ∈ ℤ are given. The variables are 𝑥, 𝑦 ∈ ℤ.

The classification of these equations is fully determined by basic number theory and the
Euclidean Algorithm.

In some sense, the ‘way’ to the solution pops out as a very natural consequence of a known
theorem.
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What does Binary Quadratic Form mean? Basics

Binary: Two variables.

Quadratic: Degree two.

Form: Homogeneous polynomial.

So, 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑛.

Once again, we might want to classify these forms. When do we have a solution?

4 / 33



The Problem Basics

These equations are harder to work because of that ‘quadratic’ part.

But we still have a nice classification.

Gauss was the first one who really investigated this stuff, and came up with some
remarkable results which we’ll show!
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Representations and
Discriminants



Representing n Representations and Discriminants

We say that a binary quadratic form (primatively) represents 𝑛 if there exists some coprime
pair 𝑥, 𝑦 so that 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑛.

Now, the discriminant of a binary quadratic form: 𝐷(𝑓(𝑥, 𝑦)) = 𝑏2 − 4𝑎𝑐.

Why do we care about the discriminant? It turns out to be very important, and as the talk
proceeds, we’ll see where it shows up.
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Representing n Representations and Discriminants

We say that a binary quadratic form (primatively) represents 𝑛 if there exists some coprime
pair 𝑥, 𝑦 so that 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑛.

Now, the discriminant of a binary quadratic form: 𝐷(𝑓(𝑥, 𝑦)) = 𝑏2 − 4𝑎𝑐.

Why do we care about the discriminant? It turns out to be very important, and as the talk
proceeds, we’ll see where it shows up.

The key theorem: If 𝑛 is represented by some form 𝑓(𝑥, 𝑦), then 𝑑 is a square mod 4𝑛, or,
𝑑2 ∈ ℤ4𝑛.
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Examples Representations and Discriminants

Let’s set 𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2 and 𝑓2(𝑥, 𝑦) = 𝑥2 + 3𝑥𝑦 + 2𝑦2.

Then, 𝐷(𝑓1) = −3 and 𝐷(𝑓2) = 1.

Note that 1 is always a square regardless of what 𝑛 is. So, 𝑛 = 12 possibly has a solution, and
we don’t break any laws of math.

Indeed, 𝑓2(2, 1) = 4 + 6 + 2 = 12
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Examples Representations and Discriminants

Let’s set 𝑓1(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2 and 𝑓2(𝑥, 𝑦) = 𝑥2 + 3𝑥𝑦 + 2𝑦2.

Then, 𝐷(𝑓1) = −3 and 𝐷(𝑓2) = 1.

Note that 1 is always a square regardless of what 𝑛 is. So, 𝑛 = 12 possibly has a solution, and
we don’t break any laws of math.

Indeed, 𝑓2(2, 1) = 4 + 6 + 2 = 12

What about −3?
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−3 Representations and Discriminants

Indeed, when 𝑛 = 3, −3 ≡ 9mod 12, so, 𝑛 could possibly be represented by 𝑓1(𝑥, 𝑦). Indeed,
𝑓1(1, 1) = 3.

When 𝑛 = 4, −3 ≡ 13mod 16. By trial and error, 13 is not a square mod 16, so by
contrapositive, 𝑛 cannot be represented by this form. But what about other forms?

As always, we ask the question: is the converse true? Place your bets.
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−3 Representations and Discriminants

Indeed, when 𝑛 = 3, −3 ≡ 9mod 12, so, 𝑛 could possibly be represented by 𝑓1(𝑥, 𝑦). Indeed,
𝑓1(1, 1) = 3.

When 𝑛 = 4, −3 ≡ 13mod 16. By trial and error, 13 is not a square mod 16, so by
contrapositive, 𝑛 cannot be represented by this form. But what about other forms?

As always, we ask the question: is the converse true? Place your bets.

Not exactly! The proper converse is: If 𝑑 is a square mod 4𝑛, then 𝑛 is represented by some
form with discriminant 𝑑.
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Equivalence



Motivating Equivalence Equivalence

The first thing we want to do is form some sort of ‘equivalence’ between different quadratic
forms.
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Change of Variables Equivalence

There are a few ways to transform a form to maintain the discriminant:

1. Replace 𝑥 with −𝑥
2. Replace 𝑥 with 𝑥 + 𝐵𝑦
3. Swap 𝑥 and 𝑦

Let’s work through an example: Replace 𝑥 with 𝑥 + 𝑦:

12 / 33



Worked Example Equivalence

So, we have: 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2.

After the change of variables, we get:

𝑓(𝑥 + 𝑦, 𝑦) = 𝑎(𝑥 + 𝑦)2 + 𝑏(𝑥 + 𝑦)𝑦 + 𝑐𝑦2

= 𝑎𝑥2 + (2𝑎 + 𝑏)𝑥𝑦 + (𝑎 + 𝑏 + 𝑐)𝑦2
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Worked Example Equivalence

So, we have: 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2.

After the change of variables, we get:

𝑓(𝑥 + 𝑦, 𝑦) = 𝑎(𝑥 + 𝑦)2 + 𝑏(𝑥 + 𝑦)𝑦 + 𝑐𝑦2

= 𝑎𝑥2 + (2𝑎 + 𝑏)𝑥𝑦 + (𝑎 + 𝑏 + 𝑐)𝑦2

The main thing: The discriminant stays unchanged!

In some way, the discriminant is an ‘invariant.’

Also, the greatest common divisor of the coefficients of 𝑓  stays the same.
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Discriminant as an Invariant Equivalence

So, what are all the transformations that preserve the discriminant?
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Discriminant as an Invariant Equivalence

So, what are all the transformations that preserve the discriminant?

Let 𝑥 → 𝐴𝑥 +𝐵𝑦 and 𝑦 → 𝐶𝑥 +𝐷𝑦. Maybe that helps…
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Discriminant as an Invariant Equivalence

So, what are all the transformations that preserve the discriminant?

Let 𝑥 → 𝐴𝑥 +𝐵𝑦 and 𝑦 → 𝐶𝑥 +𝐷𝑦. Maybe that helps…

One more hint: (𝐴𝐶
𝐵
𝐷)

We need this matrix to have determinant 1. So, in particular, the group 𝑆𝐿2(ℤ) ‘acts’ on the
set of Binary Quadratic Forms in such a way that we preserve the numbers representable by
forms (the values of 𝑥 and 𝑦 might be different though).

This is the Gauss Composition Law.
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Inequivalent Forms Equivalence

Not all forms are equivalent! Let’s take a specific example, 𝐷 = −12.

Let 𝑓1(𝑥, 𝑦) = 2𝑥2 + 2𝑥𝑦 + 2𝑦2 and 𝑓2(𝑥, 𝑦) = 𝑥2 + 3𝑦2.

The first form is always even, but the second one isn’t! So, despite having the same
discriminant, they fall into different equivalence classes.
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Inequivalent Forms Equivalence

Not all forms are equivalent! Let’s take a specific example, 𝐷 = −12.

Let 𝑓1(𝑥, 𝑦) = 2𝑥2 + 2𝑥𝑦 + 2𝑦2 and 𝑓2(𝑥, 𝑦) = 𝑥2 + 3𝑦2.

The first form is always even, but the second one isn’t! So, despite having the same
discriminant, they fall into different equivalence classes.

One more for the road!

Let 𝐷 = −15, 𝑓3(𝑥, 𝑦) = 2𝑥2 + 𝑥𝑦 = 2𝑦2.𝑓4(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 4𝑦2.

We can represent 1 with the latter form, but not the former.
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Minimality



Finding a Good Representative Minimality

We want to find a good representative for a given discriminant.

We’ll do so by the following: Minimize 𝑎 and 𝑏

For example, we can minimize 2𝑥2 + 10𝑥𝑦 + 13𝑦2 to 𝑥2 + 𝑦2 (trust me on this one)
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Finding a Good Representative Minimality

We want to find a good representative for a given discriminant.

We’ll do so by the following: Minimize 𝑎 and 𝑏

For example, we can minimize 2𝑥2 + 10𝑥𝑦 + 13𝑦2 to 𝑥2 + 𝑦2 (trust me on this one)

We say a form is reduced if: |𝑏| ≤ |𝑎| ≤ |𝑐|. Indeed, if |𝑎| ≤ |𝑐|, then applying the
transformation 𝑥 → 𝑥 + 𝑛𝑦 for a suitable 𝑛 shows that −|𝑎| ≤ |𝑏| ≤ |𝑎|
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Simplifying Assumptions Minimality

At this point, we should mention: Negative discriminants are much nicer to work with. So,
that’s where the focus of the talk will rest!
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Finiteness Minimality

We’ll show that there are only finitely many reduced forms for a given negative discriminant
(assuming 𝑎 > 0 and 𝑐 > 0).
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Finiteness Minimality

We’ll show that there are only finitely many reduced forms for a given negative discriminant
(assuming 𝑎 > 0 and 𝑐 > 0).

Proof: Let 𝑏2 − 4𝑎𝑐 = 𝑑 < 0 and the form be reduced, so that |𝑏| ≤ |𝑎| ≤ |𝑐|.

We have the following:

3𝑎2 = 4𝑎2 − 𝑎2 ≤ 4𝑎𝑐 − 𝑏2 = −𝑑, so, 𝑎 ≤ √−𝑑
3

So, there are finitely many values for 𝑎 and therefore, 𝑏 as well.

Finally, 𝑐 = −𝑑+𝑏2
𝑎  so 𝑐 is determined by 𝑎, 𝑏, 𝑑. ∎
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Specific Discriminants



Values of Discriminants Specific Discriminants

Note that we care when the discriminant is negative.

Note that: 𝑑 = 𝑏2 − 4𝑎𝑐 ≡ 𝑏2mod4.

Thus, 𝑑 ≡ 0, 1mod 4.

So, let’s take on a few examples!
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d = −3 Specific Discriminants

We’ll always start the same: 3𝑎2 ≤ |𝑑| ⇒ 𝑎 = ±1.

We always take 𝑎 > 0 and 𝑐 > 0. So, 𝑏 = 1 and thus 𝑐 = 1.

The possibilites are: 𝑥2 + 𝑥𝑦 + 𝑦2 and 𝑥2 − 𝑥𝑦 + 𝑦2.

But these are equivalent by swapping 𝑥 and −𝑦.

Since we only have one equivalence class of forms, we know that 𝑛 is representable by every
form with discriminant 𝑑 = −3 if and only if −3 is a square mod 4𝑛.
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Primes and Forms Specific Discriminants

−3 is a square mod 4𝑛 if and only if −3 is a square mod 𝑛 (as 4𝑛 ≡ 𝑛mod 3).

What primes are representable by this class of forms?

23 / 33



Primes and Forms Specific Discriminants

−3 is a square mod 4𝑛 if and only if −3 is a square mod 𝑛 (as 4𝑛 ≡ 𝑛mod 3).

What primes are representable by this class of forms?

−3 is a square mod 𝑝 if and only if 𝑝 ≡ 0, 1mod 3 (result from quadratic reciprocity).

So, 𝑝 = 19 is representable. Indeed, 19 = 32 + 3 ⋅ 2 + 22.
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Primes and Forms Specific Discriminants

−3 is a square mod 4𝑛 if and only if −3 is a square mod 𝑛 (as 4𝑛 ≡ 𝑛mod 3).

What primes are representable by this class of forms?

−3 is a square mod 𝑝 if and only if 𝑝 ≡ 0, 1mod 3 (result from quadratic reciprocity).

So, 𝑝 = 19 is representable. Indeed, 19 = 32 + 3 ⋅ 2 + 22.

A smart change of variables and case analysis shows that the form 𝑥2 + 3𝑦2 represents the
same set of numbers. This form is reduced and has discriminant −12. So:

A prime is of the form 𝑥2 + 3𝑦2 if and only if 𝑝 ≡ 0, 1mod 3.
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d = −4 Specific Discriminants

Ok, we’ll use a cool trick for this one!

We know 3𝑎2 < |𝑑| ⇒ 𝑎 = ±1.

But 𝑏 has to be even for 𝑑 ≡ 0mod 4. so in fact, 𝑏 = 0.

Thus, the only reduced form is: 𝑥2 + 𝑦2
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Sums of Two Squares Specific Discriminants

−4 is a square mod 4𝑛 if and only if −4 is a square mod 𝑛, because −4 is a square mod 4.

Finally, given a prime 𝑝, −4 is a square mod 𝑝 if and only if 𝑝 ≡ 1, 2mod 4.

This is an alternative proof of Fermat’s Sum of Two Squares theorem!

Indeed, 113 = 64 + 49.
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d = −12 Specific Discriminants

3𝑎2 < |12| ⇒ 𝑎 = ±1,±2. Also, remember, 𝑏 must be even!

1. 𝑎 = 1, 𝑏 = 0, we get: 𝑥2 + 3𝑦2
2. 𝑎 = 2, 𝑏 = −2, 0, 2, we get: 2𝑥2 ± 2𝑥𝑦 + 2𝑦2. Both are equivalent.

In case 2, when 𝑏 = 0, 4𝑎𝑐 = −12 and 𝑐 ∉ ℤ.
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d = −12 Specific Discriminants

3𝑎2 < |12| ⇒ 𝑎 = ±1,±2. Also, remember, 𝑏 must be even!

1. 𝑎 = 1, 𝑏 = 0, we get: 𝑥2 + 3𝑦2
2. 𝑎 = 2, 𝑏 = −2, 0, 2, we get: 2𝑥2 ± 2𝑥𝑦 + 2𝑦2. Both are equivalent.

In case 2, when 𝑏 = 0, 4𝑎𝑐 = −12 and 𝑐 ∉ ℤ.

In this case, we have two different equivalent forms. So, if −12 is a square mod 4𝑛, we need
to do more case analysis!

Indeed, if 𝑛 is odd, it can’t be represented by any form equivalent to the second case.
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d = −163 Specific Discriminants

3𝑎2 ≤ | − 163| ⇒ 0 ≤ 𝑎 ≤ 7. Note that 𝑏 must be odd.

Note that: 𝑎𝑐 = 163+𝑏2
4 , so when 𝑏 = 1, 3, 5, 7, we get that 𝑎𝑐 = 41, 43, 47, 53. Since all are

prime, we must have that 𝑎 = 1 since |𝑎| ≤ |𝑐|.

Finally, 𝑏 = ±1, but we end up with an equivalent form: 𝑥2 + 𝑥𝑦 + 41𝑦2.
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d = −163 Specific Discriminants

3𝑎2 ≤ | − 163| ⇒ 0 ≤ 𝑎 ≤ 7. Note that 𝑏 must be odd.

Note that: 𝑎𝑐 = 163+𝑏2
4 , so when 𝑏 = 1, 3, 5, 7, we get that 𝑎𝑐 = 41, 43, 47, 53. Since all are

prime, we must have that 𝑎 = 1 since |𝑎| ≤ |𝑐|.

Finally, 𝑏 = ±1, but we end up with an equivalent form: 𝑥2 + 𝑥𝑦 + 41𝑦2.

This is the smallest discriminant with a unique equivalence class of forms.
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Heegner Numbers Specific Discriminants

The list of discriminants with unique forms: {−3,−4,−7,−8,−11,−19,−43,−67,−163}

These are called Heegner numbers. Here are two fun facts:

1. 𝑥2 + 𝑥 + 41 is prime for 0 ≤ 𝑥 < 40 (generates 41, 43, 47, 53)
2. 𝑒𝜋

√
163 = 262537412640768743.99999999999925…
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d = 5 Specific Discriminants

Finally, we’ll look at a positive discriminant and try to see where differences occur.

We can’t use the trick that 3𝑎2 ≤ 𝑑, but we use a more naive estimate, 4𝑎2 ≤ 𝑑.

In this case, 𝑎 = ±1 and 𝑏 = ±1.
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d = 5 Specific Discriminants

Finally, we’ll look at a positive discriminant and try to see where differences occur.

We can’t use the trick that 3𝑎2 ≤ 𝑑, but we use a more naive estimate, 4𝑎2 ≤ 𝑑.

In this case, 𝑎 = ±1 and 𝑏 = ±1.

We get four forms: 𝑥2 + 𝑥𝑦 − 𝑦2, 𝑥2 − 𝑥𝑦 − 𝑦2, −𝑥2 + 𝑥𝑦 + 𝑦2, −𝑥2 − 𝑥𝑦 + 𝑦2.

It’s harder to tell if all of these are equivalent or not, right!
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d = 5 Specific Discriminants

Finally, we’ll look at a positive discriminant and try to see where differences occur.

We can’t use the trick that 3𝑎2 ≤ 𝑑, but we use a more naive estimate, 4𝑎2 ≤ 𝑑.

In this case, 𝑎 = ±1 and 𝑏 = ±1.

We get four forms: 𝑥2 + 𝑥𝑦 − 𝑦2, 𝑥2 − 𝑥𝑦 − 𝑦2, −𝑥2 + 𝑥𝑦 + 𝑦2, −𝑥2 − 𝑥𝑦 + 𝑦2.

It’s harder to tell if all of these are equivalent or not, right!

Indeed, they are all equivalent!
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Examples Specific Discriminants

We’ll use the form: 𝑥2 + 𝑥𝑦 − 𝑦2

We need 5 to be a square mod 4𝑛. Indeed, if 𝑛 is prime, we only need 5 to be a square mod 𝑛.

This is the same as saying 𝑝 ≡ 1, 4mod 5 or 𝑝 = 5.
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Examples Specific Discriminants

We’ll use the form: 𝑥2 + 𝑥𝑦 − 𝑦2

We need 5 to be a square mod 4𝑛. Indeed, if 𝑛 is prime, we only need 5 to be a square mod 𝑛.

This is the same as saying 𝑝 ≡ 1, 4mod 5 or 𝑝 = 5.

So, 29 = 52 + 5 ⋅ 1 − 1

And 131 = 112 + 11 ⋅ 1 − 1
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Curiosities of the Positive Driscriminant Type Specific Discriminants

When 𝑑 = −8, we get the form 2𝑥2 − 𝑦2.

Turns out representations need not be unique for positive discriminants!
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Curiosities of the Positive Driscriminant Type Specific Discriminants

When 𝑑 = −8, we get the form 2𝑥2 − 𝑦2.

Turns out representations need not be unique for positive discriminants!

Indeed, 7 = 2 ⋅ 4 − 1 = 2 ⋅ 16 − 25 = 2 ⋅ 64 − 121.

But for negative discriminants, we can get uniqueness! Indeed, the sum of two squares is a
unique identity!
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Curiosities of the Positive Driscriminant Type Specific Discriminants

When 𝑑 = −8, we get the form 2𝑥2 − 𝑦2.

Turns out representations need not be unique for positive discriminants!

Indeed, 7 = 2 ⋅ 4 − 1 = 2 ⋅ 16 − 25 = 2 ⋅ 64 − 121.

But for negative discriminants, we can get uniqueness! Indeed, the sum of two squares is a
unique identity!

We still don’t know if there are infinitely many discriminants with only one equivalence
class.

But we think it should be infinite!

31 / 33



We’re Done!



Acknowledgements We’re Done!

This talk’s content is mainly pulled from Richard E. Borcherd’s Number Theory playlist (He
won the Fields medal! Cool guy).
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