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1. Hensel’s Lemma
1.1. Preliminaries
We start by mentioning the 𝑝-adic absolute value.

|𝑥|𝑝 = 𝑝−𝑣𝑝(𝑥) , where 𝑣𝑝(𝑥) is the valuation of 𝑥 at 𝑝, or, the exponent at 𝑝 in the prime
factorization (or some similar factorization of 𝑥 if 𝑝 is not prime). We’ll denote |𝑥|𝑝 as |𝑥|.

This absolute value is a norm on ℚ when 𝑝 is prime, so we can complete ℚ as a metric space
with respect to this norm. Then, quotienting by the maximal ideal of Cauchy sequences that
converge to 0 (as this completion has an algebraic structure) creates ℚ𝑝, which is now a field
and complete metric space.

We can extend the absolute value on ℚ to ℚ𝑝 without any complications. We define ℤ𝑝 =
{𝑥 ∈ ℚ𝑝 : |𝑥| ≤ 1}, or, the closed unit ball of ℚ.

These numbers do have a nice intuition. If we write a number in base-p, then we consider the
rightmost digits the most important, rather than the left most. Thus, |1𝑝| > |10𝑝|.

We’ll mention some weird topological properties of ℚ𝑝:

1. The strong triangle inequality holds in ℚ𝑝, meaning: ∀𝑥, 𝑦 ∈ ℚ𝑝, |𝑥 + 𝑦| ≤ max{|𝑥|, |𝑦|},
which is inherited from the absolute value. The following properties follow directly from
this.

2. All triangles are isoceles, meaning |𝑥|, |𝑦|, |𝑥 + 𝑦| can’t all be different.
3. Every ball in ℚ𝑝 is closed and open.
4. Every ball is either disjoint or the same.
5. ℚ𝑝 is totally disconnected, meaning only singletons are the only connected sets.

The point being, we really do have a different structure than we expect on ℝ. So, from here
on, we’ll analyze these differences.

Now, we can state Hensel’s Lemma.

Hensel's Lemma: Given a polynomial 𝑓(𝑥) ∈ ℤ[𝑥], and a prime 𝑝, if there exists some 𝑥1 ∈
ℤ/𝑝ℤ:

1. 𝑓(𝑥1) ≡ 0 mod 𝑝
2. 𝑓 ′(𝑥1) ≢ 0 mod 𝑝

Then, for every value of 𝑛 ∈ ℕ, we can find some 𝑥𝑛+1 ≡ 𝑥𝑛 mod 𝑝𝑛 where 𝑓(𝑥𝑛+1) ≡
0 mod 𝑝𝑛+1. In particular, lim𝑛→∞ 𝑥𝑛 is a root for 𝑓(𝑥) in ℤ𝑝.

1.2. Applying Hensel’s Lemma
Let’s see what Hensel’s Lemma is really telling us. Given a polynomial, it gives a condition to
not only determine if a polynomial has a root in ℚ𝑝, but by following the proof, construct
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that root to our desired accuracy. We can think of 𝑛 as the number of digits of precision we
want.

Let’s look at an example: 𝑥2 − 2 with 𝑝 = 7. In ℚ, there isn’t a root. But what about ℤ7?

Clearly, 32 − 2 ≡ 0 mod 7 and that 𝑓 ′(𝑥) = 2𝑥 ≢ 0 mod 𝑝 for all 𝑥 ∈ ℤ/7ℤ. So, we should be
able to construct a root that’s always equivalent to the ones before.

The root is as follows in base-7: …664212162137

Writing this in base-7 is convenient because saying that 𝑥𝑛+1 ≡ 𝑥𝑛 mod 𝑝𝑛 means that in
base-p, you share the first 𝑛 digits. A finite truncation of this root gives us a solution to
𝑓(𝑥𝑛) ≡ 0 mod 𝑝𝑛. Take 𝑛 = 2. Then, 𝑥2 = 137 = 10. Indeed, 102 − 2 = 98 ≡ 0 mod 49.

Now, how can we prove this? We’ll have to use the Taylor Series Expansion of the derivative
and the Newton-Raphson method.

1.3. Taylor Series Expansion
We have to first define the derivative.

Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 be a polynomial with coefficients in a ring 𝑅.

Then, 𝑓 ′(𝑥) = 𝑎1 + 2𝑎2𝑥 + … + 𝑛𝑎𝑛−1𝑥𝑛−1 is its formal derivative.

Now, we can state the necessary theorem:

If 𝑓(𝑥) is a polynomial with coefficients in a field 𝔽 with characteristic zero, then, ∀𝑥, ℎ ∈ 𝔽,
we have:

𝑓(𝑥 + ℎ) = 𝑓 ′(𝑥) + 𝑓 ′(𝑥)ℎ + 1
2!

𝑓″(𝑥)ℎ2 + 1
3!

𝑓‴(𝑥)ℎ3 + ⋯

Proof

We’ll proceed by induction on the degree of an arbitrary polynomial of form 𝐹(𝑥) = 𝑎0 +
𝑎1𝑥 + 𝑎2𝑥2 + ⋯ with coefficients in ℤ.

For 𝑛 = 0: 𝐹(𝑥 + ℎ) = 𝑎0

For 𝑛 = 1:

𝐹(𝑥 + ℎ) = 𝑎1(𝑥 + ℎ) + 𝑎0 = 𝑎1𝑥 + 𝑎0 + 𝑎1ℎ = 𝐹(𝑥) + 𝐹 ′(𝑥)ℎ as 𝐹 ′(𝑥) = 𝑎1

For the inductive step, we’ll let 𝐹(𝑥) be an 𝑛 + 1 degree polynomial, and let 𝐺(𝑥) = 𝐹(𝑥) −
𝑎𝑛+1𝑥𝑛+1.

Note that 𝐹 (𝑘)(𝑥)
𝑘! = 𝐺(𝑘)(𝑥)

𝑘! + 𝑎𝑛+1(𝑛+1
𝑘 )𝑥𝑛+1−𝑘 as (𝑛+1

𝑘 ) = (𝑛+1)!
𝑘!  is precisely our coefficient

pulled from the exponent after 𝑘 many derivatives.

We have:
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𝐹(𝑥 + ℎ) = 𝑎𝑛+1(𝑥 + ℎ)𝑛+1 + 𝑎𝑛(𝑥 + ℎ)𝑛 + 𝑎𝑛−1(𝑥 + ℎ)𝑛+1 + ⋯

= 𝑎𝑛+1 ∑
𝑖=0

(𝑛 + 1
𝑖

)𝑥𝑛+1−𝑖ℎ𝑖 + 𝐺(𝑥 + ℎ)

= 𝑎𝑛+1 ∑
𝑖=0

(𝑛 + 1
𝑖

)𝑥𝑛+1−𝑖ℎ𝑖 + 𝐺(𝑥) + 𝐺′(𝑥)ℎ + 1
2!

𝐺″(𝑥)ℎ2 + ⋯

= 𝑎𝑛+1𝑥𝑛+1 + 𝑎𝑛+1𝑥𝑛ℎ + 𝑎𝑛+1(
𝑛 + 1

2
)𝑥𝑛−1ℎ2 + ⋯ + 𝐺(𝑥) + 𝐺′(𝑥)ℎ + 1

2!
𝐺″(𝑥)ℎ2 + ⋯

= 𝑎𝑛+1𝑥𝑛+1 + 𝐺(𝑥) + 𝑎𝑛+1𝑥𝑛ℎ + 𝐺′(𝑥)ℎ + 𝑎𝑛+1(
𝑛 + 1

2
)𝑥𝑛−1ℎ2 + 1

2!
𝐺″(𝑥)ℎ2 + ⋯

= 𝐹(𝑥) + ℎ(𝑎𝑛+1𝑥𝑛 + 𝐺′(𝑥)) + ℎ2(𝑎𝑛+1(
𝑛 + 1

2
)𝑥𝑛−1 + 1

2!
𝐺″(𝑥)) + ⋯

= 𝐹(𝑥) + ℎ(𝐹 ′(𝑥)) + 1
2!

ℎ2(𝐹″(𝑥)) + ⋯ + 1
(𝑛 + 1)!

𝐹 (𝑛+1)(𝑥)ℎ𝑛+1

as desired. ∎

It really is a matter of collecting like terms.

1.4. Proof of Hensel’s Lemma
It’s remarkable that the proof of Hensel’s Lemma is quite elementary. It only uses the
Newton-Raphson method, a tool many students learn in calculus. But this method is
designed for finding roots of polynomials, after all. The only difference is, we can guarantee
convergence in ℚ𝑝.

Now that the Taylor Series is well defined, we can prove Hensel’s Lemma.

Proof

Let 𝑓(𝑥) ∈ ℤ[𝑥], and a prime 𝑝 be given so that there exists some 𝑥1 ∈ ℤ/𝑝ℤ so that:

1. 𝑓(𝑥1) ≡ 0 mod 𝑝
2. 𝑓 ′(𝑥1) ≢ 0 mod 𝑝

Then, for every value of 𝑛 ∈ ℕ, we can find some 𝑥𝑛+1 ≡ 𝑥𝑛 mod 𝑝𝑛 where 𝑓(𝑥𝑛+1) ≡
0 mod 𝑝𝑛+1. In particular, lim𝑛→∞ 𝑥𝑛 is a root for 𝑓(𝑥) in ℤ𝑝.

We’ll proceed by induction, noting that the base case is given, so we can do the inductive
step directly.

Assume that 𝑓(𝑥𝑛) ≡ 0 mod 𝑝𝑛, so 𝑓(𝑥𝑛) = 𝑝𝑛𝑎. Then, applying the Taylor Series expansion
with ℎ = 𝑏𝑝𝑛, we get:

𝑓(𝑥𝑛 + 𝑏𝑝𝑛) = 𝑓(𝑥𝑛) + 𝑏𝑝𝑛𝑓 ′(𝑥𝑛) + 𝑏2𝑝2𝑛𝑓″ 𝑥𝑛
2

+ ⋯

≡ 𝑓(𝑥𝑛) + 𝑏𝑝𝑛𝑓 ′(𝑥𝑛) mod 𝑝𝑛+1

≡ 𝑎𝑝𝑛 + 𝑏𝑝𝑛𝑓 ′(𝑥𝑛) mod 𝑝𝑛+1

≡ 𝑎 + 𝑏𝑓 ′(𝑥𝑛) mod 𝑝

Since 𝑎 is given and 𝑓 ′(𝑥𝑛) ≡ 𝑓 ′(𝑥1) ≢ 0 mod 𝑝, we can solve for 𝑏 so that 𝑎 + 𝑏𝑓 ′(𝑥𝑛) is
equivalent to 0. This ensures some solution exists to 𝑓(𝑥) mod 𝑝𝑛+1. So, we set 𝑥𝑛+1 = 𝑥𝑛 +
𝑏𝑝𝑛. Then, 𝑥𝑛+1 ≡ 𝑥𝑛 mod 𝑝𝑛.
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Finally, lim𝑛→∞ 𝑥𝑛 is a root for 𝑓(𝑥) in ℤ𝑝 because for every 𝜀 > 0, we can ensure |𝑓(𝑥𝑁)| <
𝜀 for some 𝑁 ∈ ℕ, and |𝑓(𝑥𝑚)| < |𝑓(𝑥𝑁)| for 𝑚 > 𝑁 . ∎

We need to use Hensel’s Lemma to prove that squares in ℚ𝑝 take the following form: 𝑥 =
𝑝2𝑣𝑝(𝑥) ⋅ 𝑥′ with 𝑥′ ∈ ℤ𝑝. Or, the valuation at the prime 𝑝 must be even. We’ll omit this proof
for brevity.

1.5. Roots of Unity
One application of Hensel’s Lemma is studying polynomials of the form 𝑥𝑚 = 1 in ℚ𝑝 for any
value of 𝑚. The values of 𝑥 that satisfy this polynomial are called 𝑚th roots of unity. They
help us understand the structure of our space. Let’s determine our roots of unity and valid
values of 𝑚.

Let 𝑓(𝑥) = 𝑥𝑝 − 1. We’ll attempt to find solutions.

The multiplicative group mod 𝑝 tells us that 𝑥𝑚 ≡ 1 mod 𝑝 for all 𝑥 in our group if and only
if 𝑚 is a multiple of the order of the group, 𝑝 − 1. Thus, we have 𝑥𝑚 ≡ 1 mod 𝑝 for all 𝑥 ≢
0 mod 𝑝 when 𝑚 = 𝑘(𝑝 − 1). We’ll let 𝑚 = 𝑝 − 1 as we want to find the smallest such 𝑚 that
yields non-zero solutions. So, we have 𝑝 − 1 solutions.

Then, 𝑓 ′(𝑥) = (𝑝 − 1)𝑥𝑝−2. Since (𝑝 − 1) ≢ 0 mod 𝑝 and 𝑥 ≢ 0 mod 𝑝, we have that the
derivative is non-zero for 𝑥 ≢ 0 mod 𝑝. So, we have deduced that there are precisely 𝑝 − 1
many 𝑝 − 1th roots of unity.

2. The Hasse Minkowski Principle
2.1. The Local-Global Principle
Once again, Hensel’s Lemma tells us about the existence of a root with minimal effort in ℤ𝑝;
Do a simple computation and check a derivative. So, finding a solution to a polynomial in ℤ𝑝
and by extension, ℚ𝑝 is really easy.

Since ℚ ⊂ ℚ𝑝 and both of them share similar structures, such as being rings (and by
extension, we can use ring theory to get information for either ℚ or ℚ𝑝) or the absolute value
behaving nicely on both, a very reasonable question to ask is: Does information in ℚ𝑝 tell us
anything about ℚ? Does information in local spaces, such as ℚ𝑝, give us information about
the global space, such as ℚ? This is the idea behind the Local-Global Principle.

One such example is looking at roots of polynomials. One direction is easy; If we have a root
to a polynomial in ℚ, we have one in ℚ𝑝. But what about the other direction? We have a
very nice principle to describe this.

The Hasse Minkowski Principle: Given a quadratic form in 𝑛 variables in ℚ, say 𝑥2
1 +

𝑥2
2 + ⋯ + 𝑥2

𝑛, the polynomial has a non-zero solution in ℚ if and only if it has a non-zero
solution in every ℚ𝑝 and ℝ.

2.2. Quadratic Forms
We first need to analyze quadratic forms. In particular, a quadratic form is: ∑𝑖 ∑𝑗 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

for some suitable 𝑖, 𝑗, 𝑎𝑖𝑗. So, 2𝑥1𝑥2 − 2
3𝑥2𝑥3 is a quadratic form of 3 variables. But this isn’t

like the one in the Hasse Minkowski Principle. We have to do some linear algebra to convince
ourselves that the Hasse Minkowski Principle is well defined.
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Performing a change of basis allows us to ensure that one quadratic form, say 𝑞1, has the
same solutions as another form 𝑞2. But first, we need to represent quadratic forms as
matrices. We’ll do so as follows:

Let 𝑞 = ∑𝑖 ∑𝑗 𝑎𝑖𝑗𝑥𝑖𝑥𝑗. Then, we define 𝐴 to be the unique symmetric matrix so that 𝑎𝑖𝑗

comes from 𝐴. Then, we say that two quadratic forms are related if and only if the matrices
of those forms are similar.

If 𝑞1 has a solution, then applying the correct change of basis transformation will give us a
solution in 𝑞2, and vice versa.

Let’s look at an example, 𝑥2 − 2𝑥𝑦 + 𝑦2. We should see that (1, 1) is a non-zero solution to
this quadratic form. The matrix associated with this form is: 𝐴 = ( 1

−1
−1
1 ). Then, we’ll

diagonalize this matrix to get the matrix: 𝐵 = (2
0

0
0), 𝑞𝐵 = 2𝑥2. Since 𝐴 is similar to 𝐵, we

see that 𝐵 has a non-zero solution: (0, 1).

Now, recall that since any symmetric matrix is diagonalizable, we can turn any quadratic
form into one of the suitable form, where each variable is a square.

2.3. The Proof for 𝑛 ≤ 3
We start by noting that the complete proof is outside of the scope of this paper. We’ll only
show the proof for 𝑛 ≤ 3.

Proof

For all cases, note that is 𝑓 has a solution in ℚ, it will definitely have one in ℚ𝑝 as ℚ ⊂ ℚ𝑝
and ℚ ⊂ ℝ. So, we’ll only show the reverse direction, or, assume a solution in every ℚ𝑝 and ℝ
and show a solution exists in ℚ.

𝑛 = 1:

In this case, no squares have a non-zero solution by looking at ℝ.

𝑛 = 2:

We start by showing that we can consider 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑐𝑦2 with 𝑐 ∈ ℤ and this is sufficient.

Since we are finding roots, we can multiply by the lowest common denominator to ensure our
coefficients are in ℤ. So, 𝑓(𝑥, 𝑦) = 𝑏𝑥2 + 𝑎𝑦2. Then, we can multiply by 𝑏 to get: 𝑓(𝑥, 𝑦) =
𝑏2𝑥2 + 𝑎𝑏𝑦2.

Then, by noting that a non-zero solution indeed exists, choosing 𝑥′ = 𝑥
𝑏  where 𝑥 is from our

original solution, we can eliminate 𝑏2 in 𝑓(𝑥, 𝑦), and renaming 𝑐 = 𝑎 ⋅ 𝑏, we get: 𝑓(𝑥) = 𝑥2 +
𝑐𝑦2.

Now, begin by recalling that 𝑓(𝑥, 𝑦) must have a non-zero solution in ℝ. So, 𝑓(𝑥, 𝑦) = 𝑥2 −
𝑐𝑦2 and 𝑐 > 0. Rearranging yields: 𝑐 = (𝑥

𝑦)
2
. Since this equality holds in every ℚ𝑝, all

valuations are even, so 𝑐 ∈ ℚ and 𝑐 is a square, say 𝑐 = 𝑑2. So, 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑑2𝑦2. This is
solvable by choosing 𝑥 = 𝑑2 and 𝑦 = 1.

𝑛 = 3:

We owe this proof to Legendre, and we’ll follow his steps.

We can consider 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑎𝑦2 + 𝑏𝑧2 where 𝑎, 𝑏 are integers and squarefree using a
similar process as in the 𝑛 = 2 case by multiplying and removing squares. Furthermore, we
can show that gcd(𝑎, 𝑏) = 1 by noting that if gcd(𝑎, 𝑏) > 1 = 𝑑 and a solution exists, then
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𝑑 | 𝑥2 ⇒ 𝑑|𝑥. So, we could absorb this factor into 𝑥. If 𝑎 = 0 or 𝑏 = 0, we have the case where
𝑛 = 2. So, now, induct on |𝑎 + 𝑏| as 𝑎, 𝑏 ∈ ℤ, where for the rest of the question, this denotes
the absolute value in ℝ.

For our base case, 𝑎 = ±1, 𝑏 = ±1. So, 𝑓(𝑥, 𝑦, 𝑧) = ±𝑥2 ± 𝑦2 ± 𝑧2 By solution in ℝ, we must
have alternating signs somewhere. Without loss of generality, let 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 − 𝑦2 ± 𝑧2.
Then, (1, 1, 0) is a non-zero solution.

For our inductive step, assume that 2 ≤ |𝑎 + 𝑏| < 𝑛 + 1 yields a solution. We’ll show that |𝑎 +
𝑏| = 𝑛 + 1 also yields a solution. Without loss of generality, assume |𝑎| < |𝑏|.

We want to prove the existence of some 𝑡, 𝑏′ so that the following equation holds: 𝑏𝑏′ = 𝑡2 − 𝑎
with 𝑏′ ≥ 2. Then, we can argue that 𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 − 𝑎𝑦2 ± 𝑏′𝑧2 has a non-zero solution if
and only if 𝑓(𝑥, 𝑦, 𝑧) has a non-zero solution. So, we can tackle this problem with three steps.

1. Show that such 𝑡, 𝑏′ exist.

2. Show that 𝑔(𝑥, 𝑦, 𝑧) has a non-zero solution if and only if 𝑓(𝑥, 𝑦, 𝑧) has a non-zero solution.

3. Show that |𝑏′| < |𝑏| and make 𝑏′ squarefree by removing all squares, so that we can apply
the induction hypothesis.

We’ll start with step 1. Showing that 𝑏𝑏′ = 𝑡2 − 𝑎 is the same as showing that 𝑎 is a square
mod 𝑏. Since 𝑏 is squarefree, we can write 𝑏 = 𝑝1𝑝2⋯𝑝𝑘. Let 𝑝𝑖 be arbitrary. We’ll show that 𝑎
is a square mod 𝑝𝑖. If 𝑎 ≡ 0 mod 𝑝𝑖, we’re done.

Otherwise, note that 𝑥2 − 𝑎𝑦2 ± 𝑏𝑧2 ≡ 0 mod 𝑝𝑖 as we assumed there is a non-zero solution in
ℚ𝑝𝑖

. Additionally, we can assume that one of 𝑥, 𝑦, 𝑧 are not equivalent to 0 mod 𝑝𝑖. (No one
seems to explain why we can do so except saying the inverse limit structure of ℤ𝑝).

Since 𝑝𝑖 | 𝑏, we have: 𝑥2 − 𝑎𝑦2 ≡ 0 mod 𝑝𝑖.

If 𝑥 ≡ 0 mod 𝑝𝑖, as 𝑝𝑖 ∤ 𝑎, we must have that 𝑦 ≡ 0 mod 𝑝𝑖. Thus, 𝑝2
𝑖 | 𝑓(𝑥, 𝑦, 𝑧), and by

extension, 𝑝2
𝑖 | 𝑏𝑧2. Since 𝑏 is squarefree, we must have that 𝑧 ≡ 0 mod 𝑝𝑖. But this contradicts

that one of 𝑥, 𝑦, 𝑧 are not equivalent to 0 mod 𝑝𝑖.

So, 𝑥2 − 𝑎𝑦2 ≡ 0 mod 𝑝𝑖 for nonzero 𝑥, so 𝑎 must be a square mod 𝑝𝑖. Then, by the Chinese
Remainder Theorem, since 𝑎 is a square mod 𝑝𝑖 for all suitable 𝑖, it must also be a square
mod 𝑏. So, we can write 𝑎 ≡ 𝑡2 mod 𝑏 for some 𝑡 < 𝑏. But by definition, this means 𝑏′𝑏 = 𝑡2 −
𝑎 for some 𝑏′ as desired.

Now, we can proceed with step 2. We’ll show 𝑓(𝑥, 𝑦, 𝑧) has a non-zero solution in ℚ if and
only if 𝑏 = 𝑥2 − 𝑎𝑦2. This will allow us to show that 𝑔(𝑥, 𝑦, 𝑧) has a solution.

Assume 𝑏 = 𝑥2 − 𝑎𝑦2. Then, 𝑓(𝑥, 𝑦, ±1) = 𝑥2 − 𝑎𝑦2 − 𝑥2 + 𝑎𝑦2 = 0.

Now, assume that there’s a non-zero solution in ℚ. So, 𝑥2 − 𝑎𝑦2 ± 𝑏𝑧2 = 0. Note that 𝑥 ≠ 0,
or else we would get: 𝑎 = ±𝑏(𝑦

𝑧)2 which is a contradiction as 𝑎 is squarefree. Thus, 𝑥 ≠ 0.
Rearranging yields:

𝑥2 ± 𝑎𝑦2 = ±𝑏𝑧2

𝑥2

𝑧2 − 𝑎𝑦2

𝑧2 = ±𝑏

(𝑥
𝑧
)

2
− 𝑎(𝑦

𝑧
)

2
= ±𝑏

Thus, choosing 𝑏 so that ±𝑏 = 𝑏, and setting 𝑥 = (𝑥
𝑧) and 𝑦 = (𝑦

𝑧) yields the result.
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Since 𝑏𝑏′ = 𝑡2 − 𝑎, we know that 𝑥2 − 𝑎𝑦2 ± 𝑏𝑏′𝑧2 has a non-zero solution when 𝑓(𝑥, 𝑦, 𝑧) has
a non-zero solution.

The reason for this weird construction is that 𝑏𝑏′ is a norm in the quadratic number field
ℚ(

√
𝑎). Then, we can use the fact that since 𝑏𝑏′ is a norm, we get the following relationship:

𝑏 is a norm if and only if 𝑏′ is a norm. Or, a non-zero solution for 𝑏 exists if and only if a
non-zero solution for 𝑏′ exists.

Now, we can proceed to step 3. Recall that 𝑏 ≥ 2. We can choose 𝑡 so that |𝑡| ≤ | 𝑏
2 | by

choosing the residue that falls into the first half of ℤ/𝑏ℤ. We have the following equation:

|𝑏′| = |𝑡
2 − 𝑎

𝑏
| ≤ |𝑡

2

𝑏
| + |𝑎

𝑏
| ≤ |𝑏

2

4
| ⋅ |1

𝑏
| + 1 = |𝑏

4
| + 1 < |𝑏|

Finally, we need to ensure that 𝑏′ is squarefree by removing squares. So let 𝑏″ = 𝑏′ ⋅ 𝑢 so that
𝑏″ is squarefree and 𝑢 contains all even powers of 𝑏′. Since |𝑏″| ≤ |𝑏′| and 𝑏′ must have some
prime in its factorization, we see that |𝑏″| ≥ 2. Applying the induction hypothesis on ℎ(𝑥) =
𝑥2 − 𝑎𝑦2 ± 𝑏″𝑧2 results in 𝑔(𝑥) having as a non-zero solution. Thus, 𝑓(𝑥) has a non-zero
solution, as desired.

∎

Look at [1] for a similar proof to the Hasse-Minkowski Principle.

Unfortunately, despite how nice this theorem is, the Local-Global Principle fails to hold for
higher degree polynomials.

2.4. Solving Quadratic Forms for 𝑛 = 3
For simplicity, we’ll write out quadratic form as 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2, and try to determine when
this has non-zero solutions for different non-zero values of 𝑎, 𝑏, 𝑐 ∈ ℚ. We can use Hensel’s
Lemma and some elementary number theory to deduce these values.

We’ll only try to determine what solutions exist in ℚ𝑝 when 𝑝 is odd and doesn’t divide any
of 𝑎, 𝑏, 𝑐.

Note that we can let each of 𝑎, 𝑏, 𝑐 be pairwise coprime in the numerator, or we could divide
out by the greatest common factor. Then, we can apply the same trick as in the proof to
simplify to the case that 𝑎, 𝑏, 𝑐 are integers.

We’ll follow Gouvêa in [2] and prove that there exists some 𝑥0, 𝑦0, 𝑧0 all not divisible by 𝑝 so
that:

𝑎𝑥2
0 + 𝑏𝑦2

0 + 𝑐𝑧2
0 ≡ 0 mod 𝑝

Proof

By letting 𝑥, 𝑦, 𝑧 range over all possible values, we have the following equation by Fermat’s
Little Theorem:

(𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2)𝑝−1 ≡ {1 if (𝑥, 𝑦, 𝑧) is not a solution
0 if (𝑥, 𝑦, 𝑧) is a solution

Let 𝑁 ≡ ∑(𝑥,𝑦,𝑧) (𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2)𝑝−1. Expanding this out, we see that any inner term must
be written as 𝑚𝑥2𝑖𝑦2𝑗𝑧2𝑘 by choosing 𝑖 many 𝑥2, 𝑗 many 𝑦2 and 𝑘 many 𝑧2 in the trinomial
expansion, with 𝑚 ∈ ℤ. Thus, 2𝑖 + 2𝑗 + 2𝑘 = 2(𝑝 − 1). But notice that:
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𝑁 ≡ ∑
(𝑥,𝑦,𝑧)

[𝑎𝑝−1𝑥2(𝑝−1) + 𝑎𝑝𝑏𝑥2(𝑝−2)𝑦2 + 𝑎𝑝−1𝑏2𝑥2(𝑝−3)𝑦2(2) + ⋯ + 𝑐𝑝−1𝑧2(𝑝−1)] mod 𝑝

≡ ∑
(𝑥,𝑦,𝑧)

𝑎𝑝−1𝑥2(𝑝−1) + ∑
(𝑥,𝑦,𝑧)

𝑎𝑝𝑏𝑥2(𝑝−2)𝑦2 + ⋯ + ∑
(𝑥,𝑦,𝑧)

𝑐𝑝−1𝑧2(𝑝−1) mod 𝑝

We want to show that 𝑁 ≡ 0 mod 𝑝 since the triplet (0, 0, 0) is a solution. Thus, if 𝑁  is
equivalent to 0, then, the number of non-zero solutions is 𝑁 − 1 ≢ 0 mod 𝑝, and a non-zero
solution exists.

So, all we need to show is that any combination of 𝑖, 𝑗, 𝑘 results in the sum being 0.

Note that ∑𝑝−1
𝑛=0 𝑛𝑙 ≡ 0 mod 𝑝 for all 𝑙 < (𝑝 − 1). To see this, note that there are less than 𝑝 −

1 solutions of the polynomial 𝑓(𝑛) = 1 − 𝑛𝑙. Letting 𝑚 be a non-solution, we see that the sets
{1, 2, …, 𝑛 − 1} and {𝑚, 2𝑚, …, (𝑛 − 1)𝑚} are in bijection. So, ∑𝑝−1

𝑛=0 𝑛𝑙 = ∑𝑝−1
𝑛=0 (𝑚 ⋅ 𝑛)𝑙.

Rearranging yields: (1 − 𝑚𝑙) ∑𝑝−1
𝑛=0 𝑛𝑙 = 0. As (1 − 𝑚𝑙) ≠ 0 by construction, the sum is 0.

Notice that 2𝑖 + 2𝑗 + 2𝑘 = 2(𝑝 − 1) ⟹ one of 2𝑖, 2𝑗, 2𝑘 < (𝑝 − 1). Without loss of generality,
let 2𝑖 < (𝑝 − 1).

Now, consider the sum ∑(𝑥,𝑦,𝑧) 𝑚𝑥2𝑖𝑦2𝑗𝑧2𝑘. We can rearrange to get:

∑
(𝑥,𝑦,𝑧)

𝑚𝑥2𝑖𝑦2𝑗𝑧2𝑘 ≡ ∑
(𝑦,𝑧)

[𝑚𝑦2𝑗𝑧2𝑘 ∑
𝑝−1

𝑥=0
𝑥2𝑖] mod 𝑝

≡ ∑
(𝑦,𝑧)

𝑚𝑦2𝑗𝑧2𝑘 ⋅ 0 mod 𝑝

≡ 0 mod 𝑝

So, 𝑁 ≡ 0 mod 𝑝 and by the existence of a trivial solution, the number of non-zero solutions
is: 𝑁 − 1 ≢ 0 mod 𝑝. ∎

So, we know there exists some solution (𝑥0, 𝑦0, 𝑧0) to the quadratic form: 𝑎𝑥2
0 + 𝑏𝑦2

0 + 𝑐𝑧2
0 .

Then, turning this into a function with respect to 𝑥, we get: 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑦2
0 + 𝑐𝑧2

0 .

Now, we can apply Hensel’s Lemma. Choosing 𝑥 = 𝑥0 leads to a non-zero solution mod 𝑝.

Then, 𝑓 ′(𝑥) = 2𝑎𝑥 ≢ 0 as 𝑎 ≠ 0.

So, the only assumption we made is that 𝑝 doesn’t divide 𝑎, 𝑏, 𝑐 or, 𝑝 doesn’t divide 𝑎𝑏𝑐.

By this criteria, we see that 3𝑥2 ± 5𝑦2 ± 7𝑧2 has a solution in ℚ𝑝 for every 𝑝 > 7. Indeed,
choosing 𝑓(𝑥) = 3𝑥2 + 5𝑦2 − 7𝑧2, we see that (1, 2, 2) is a solution.

We list out the final list of criteria to see whether a quadratic form has a non-zero solution in
ℚ by using the Hasse-Minkowski Principle, which can be found in [2]:

1. All of 𝑎, 𝑏, 𝑐 don’t share the same sign
2. For each odd prime dividing 𝑎, there exists some 𝑟 ∈ ℤ so that 𝑏 + 𝑟2𝑐 ≡ 0 mod 𝑝, and

similarly for the odd primes dividing 𝑏 and 𝑐.
3. If all of 𝑎, 𝑏, 𝑐 are odd, then 4 divides one of: 𝑎 + 𝑏, 𝑎 + 𝑐, 𝑏 + 𝑐.
4. If 𝑎 is even, then 8 divides either 𝑏 + 𝑐 or 𝑎 + 𝑏 + 𝑐, and similarly if 𝑏 or 𝑐 are even.
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