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Abstract
In this exposé, we introduce the 𝑝-adic upper half plane, the Bruhat-Tits tree,
the connections between them and finally, a foray into rigid cocycles all with

motivating and explanatory examples.
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1 Annuli and Affinoids
To work with the 𝑝-adic upper half plane, we first need to get situated with ℂ𝑝 and some useful
sets defined in the half plane. These sets are incredibly important in defining important 𝑝-adic
analogues of meromorphic functions from complex analysis.

1.1 ℂ𝑝
To begin, we need a brief idea of ℂ𝑝’s structure.

To this extent, we will assume the reader is acquainted with ℚ𝑝, the absolute value on it where
|𝑥|𝑝 = 𝑝−𝑣𝑝(𝑥), and the 𝑝-adic valuation.

We will extend |𝑥|𝑝 so that it is well defined on any finite field extension of ℚ𝑝. In particular,
we need to know a few things, which we will assume without proof, but can be find in [1].

(i) If |𝑥|𝑝 were to exist on a finite field extension of ℚ𝑝, say 𝐾, then 𝐾 would be complete
with respect to |𝑥|𝑝.

(ii) If |𝑥|𝑝 exists, it will be unique. Furthermore, |𝑥|𝑝 on any finite extensions of 𝐾 will have
the same value for elements in 𝐾.

(iii) Automorphisms of 𝐾, denoted by 𝜎, that fix the base field ℚ𝑝 in our field extension, have
the following property: |𝑥|𝑝 = |𝜎(𝑥)|𝑝 (this fact secretly uses the point above).

(iv) The following equation holds: ∏𝜎|𝜎(𝑥)|𝑝 = |𝑥|𝑛𝑝 . Then, recalling that the field norm,
denoted 𝒩𝐾/ℚ𝑝

 is the same as ∏𝜎|𝜎|, we can rearrange to get that:

|𝑥| = 𝑛√|𝒩𝐾/ℚ𝑝
(𝑥)|𝑝

We will assume this is an absolute value without proving it. Now, we can show that any finite
field extension of ℚ𝑝 is not algebraically closed by finding a transcendental root in ℚ𝑝.

Proof.

Consider a sequence 𝜁1, 𝜁2, … to be roots of unity not in ℚ𝑝 of growing degree, so that 𝜁𝑖 | 𝜁𝑖+1
and [ℚ𝑝(𝜁𝑖) : ℚ𝑝] < [ℚ𝑝(𝜁𝑖+1) : ℚ𝑝]. Then, consider the field extensions ℚ𝑝(𝜁1), ℚ𝑝(𝜁2), ….
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Now, consider the function 𝑥𝑚𝑖 − 1, where 𝑚𝑖 is the degree of the ℚ𝑝(𝜁𝑖) extension. There
exists a unique root of this function that lives strictly in ℚ𝑝(𝜁𝑖) and not in ℚ𝑝(𝜁𝑖−1). Create a
sequence of these roots 𝛼𝑖.

Finally, consider the series ∑∞
𝑖=0 𝜁𝑖𝑝𝑖. This limit converges, but it can not converge to an element

in a finite extension of ℚ𝑝. To see this, let us assume for the sake of contradiction that the
series converges to 𝑐, which lives in a finite extension of ℚ𝑝. So, [ℚ𝑝(𝑐) : ℚ𝑝] = 𝑛 for some finite
𝑛. But choose 𝑖 so that 𝑛 < 𝑚𝑖. Thus, 𝛼𝑖 is not a root in ℚ𝑝(𝑐), and thus, our series can not
converge to 𝑐 in a finite field extension. Indeed, we found a transcendental root, and thus, ℚ𝑝
is incomplete with respect to the extended absolute value.

∎

Since finite field extensions of ℚ𝑝 are not algebraically closed, we get that the algebraic closure is
a field extension of infinite degree. This is called ℚ𝑝. So, |𝑥|𝑝 = 𝑝𝑦 for some 𝑦 ∈ ℚ when 𝑥 ∈ ℚ𝑝.

Now, ℚ𝑝 is not a field, so after quotienting by the maximal ideal, we get ℂ𝑝.

1.2 Projective Space
Now that we have ℂ𝑝 constructed, we will introduce the 𝑝-adic upper half plane. Formally, we
say that the 𝑝-adic upper half plane is:

ℋ𝑝 = ℙ1(ℂ𝑝) − ℙ1(ℚ𝑝)

Let us unravel this definition using ℂ and ℝ as an example. Elements of
ℙ1(ℝ) are equivalence classes of elements in ℝ2, where the relation is that
(𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) ⇔ ∃𝑐 ≠ 0, 𝑥1 = 𝑐𝑥2 and 𝑦1 = 𝑐𝑦2. So, for example, the point (3, 2) is
equivalent to (6, 4). We denote elements as follows: [𝑥 : 𝑦].

Note that we would like a ‘nice’ representative of the equivalence class, and choose the element
so that either 𝑥 or 𝑦 is a unit or the multiplicative identity over our field. These are called
unimodular coordinates.

ℙ1(ℝ) = {[0 : 0], [1 : 0]}. One way we can think about this is that each element represents a
line (excluding the origin as we need to scale), and any point on that line is in the same
equivalence class.

So, elements in ℙ1(ℂ) are: {[𝑥 : 1] | 𝑥 ∈ ℂ} ∪ {[0 : 0], [1 : 0]}. These two points we add are of
importance. The first element is the origin while the second element is called the point at
infinity. By scaling, we can see that ℙ1(ℂ) − ℙ1(ℝ) is the unit circle in ℂ except the points (1, 0)
and (−1, 0). We can find any element in ℂ − ℝ by multiplying by a scalar value as necessary.
So we really can get every number in ℂ − ℝ by this construction.

Notice that this construction splits the unit circle in two distinct halves. This
is not true in the 𝑝-adic case, but the definition is still the same. Mainly,
ℙ1(ℂ𝑝) = {[𝑥 : 1] | 𝑥 ∈ ℂ𝑝} ∪ {[0 : 0], [1 : 0]}. Then, we remove all elements from ℙ1(ℚ𝑝) and
we get the 𝑝-adic upper half plane.

1.3 p-adic Annuli
The next two sections relies heavily on [2] and [3].

An annulus in geometry is a region with a hole in it. The most classic annulus is a ring. In
traditional Euclidean space, it is a circle with a smaller circle cut out. And we can visualize ℝ2
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as a plane. But visualizing ℋ𝑝 will not be an easy task, so we will have to define some things
before we can do so.

First, we have to define the 𝑝-adic absolute value in two dimensions since elements
in ℋ𝑝 are of two dimensions. Given (𝑥1, 𝑦1) and (𝑥2, 𝑦2) as points in ℋ𝑝, we define
|(𝑥1, 𝑦1) − (𝑥2, 𝑦2)| = |𝑥1𝑦2 − 𝑥2𝑦1|.

We define a set called an annulus: 𝒲𝑠 = {𝑥 ∈ ℋ𝑝 : 1
𝑝 < |𝑥 − 𝑠| < 1, 𝑠 = 0, 1, …, 𝑝 − 1}. This

creates a circle centered at point 𝑠 that includes all elements of absolute value less than 1 but
greater than 1

𝑝 . Note that these elements must strictly be in ℋ𝑝. 𝒲0 is called the standard
annulus.

We also define the annulus at infinity: 𝒲∞ = {𝑥 ∈ ℋ𝑝 : 1 < |𝑥 − 𝑠| < 𝑝, 𝑠 = 0, 1, …, 𝑝 − 1}

We provide an illustration for 𝑝 = 2 and 𝑝 = 3:

𝑝 = 2

𝒲∞

𝒲0 𝒲1

∞

0 1

𝑝 = 3

𝒲∞

0 1

2

∞

𝒲0 𝒲1

𝒲2

Keep in mind that this illustration is flawed as ℂ𝑝 is totally disconnected so we do not really
have circles. Despite that, the points illustrated in the drawings really are points. We also
decided to put the drawing in a box, but there should not be a border of the drawing, like how
we visualize ℂ ∪ {∞} as a circle rather than a plane.

This drawing also avoids the fact that the annulus at infinity really is an annulus with infinity
in the middle, but these pictures make more sense in terms of definitions. Also, the points are
in ℙ1(ℚ𝑝), so they are not in ℋ𝑝. Finally, we note that everything in the drawing (each annulus
and the white space inside the box) is in ℙ1(ℂ𝑝) ∪ ℙ1(ℚ𝑝).

Let us take a look at an example. We know that 
√

2 ∉ ℚ3, so 
√

2 ∈ ℂ3 − ℚ3. In particular,
we see that 1 +

√
2 will have field norm 3 (𝑎2 + 2𝑏2 = 12 + 2(1)2 = 3). Thus, |1 +

√
2|𝑝 = √𝑝.

Thus, 1 +
√

2 ∈ 𝒲0.

What we would like to do (we will explain why later) is define even more precise annuli, or
smaller annuli. For example, say 𝒲3 with 𝑝 = 2. How would we do this? A finer definition:
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𝒲𝑠,𝑛 = {𝑥 ∈ ℋ𝑝 : 1
𝑝𝑛 < |𝑥 − 𝑠| < 1

𝑝𝑛−1 , 𝑠 = 0, 1, …, 𝑝𝑛 − 1}

Note: In an attempt to clarify notation and not confuse different sized annuli, we will put a
second subscript to denote which power of 𝑝 we will consider. This is not traditional notation.

By repeating this process, we would get smaller annuli inside 𝒲0,1 or 𝒲1,1 in some sort of
recursive picture. But we also need to deal with 𝒲∞,𝑛. we will define it as follows:

𝒲1
𝑠 ,𝑛 = {𝑥 ∈ ℋ𝑝 : 1 < |𝑥 − 1

𝑠 | < 𝑝𝑛, 𝑠 = ∞, 𝑝, 2𝑝, …, 𝑝𝑛−1 − 𝑝}, and by convention, when
𝑠 = ∞, this is the annuli at infinity.

Before we add more annuli, we will make one small change to our diagram. Instead of drawing
𝒲∞ as a ring around the diagram, we will draw it as a separate annuli around infinity. we will
also add the second subscript. So, we get:

𝑝 = 2

𝒲0,1 𝒲1,1

∞

0 1

𝒲∞,1

𝑝 = 3

0 1

2

∞

𝒲0,1 𝒲1,1

𝒲2,1

𝒲∞,1

Now, we can draw the diagrams for 𝒲𝑠,2. So, here goes:

4



𝑝 = 2

∞

𝒲∞,2

1
2

𝒲1
2,2

𝒲0,2

0

𝒲2,2

2

𝒲1,2

1

𝒲3,2

3

𝑝 = 3

∞
𝒲∞,2

1
3

𝒲1
3,2

1
6

𝒲1
6,20

𝒲0,2

3

𝒲3,2
6

𝒲6,2

1

𝒲1,2

4

𝒲4,2
7

𝒲7,2
2

𝒲2,2

5

𝒲5,2
8

𝒲8,2

1.4 𝑝-adic Affinoids
As we can see, the purple area really is growing and gaining more points in ℋ𝑝 as we refine the
annuli. We call this purple area the affinoid, denoted Ω. In particular, we correlate the radius of
the annuli with the size of the affinoid. i.e. Ω1 is the purple area in the diagram where we only
have annuli of radius 1 and Ω2 is the purple area in the diagram where we only have annuli of
radius 2 and so on. We call Ω1 the standard affinoid, and denote it by 𝒜.

In our diagram of Ω2, the white area in the box is now in the affinoid. The color is lighter
for visualization purposes only. If we had no square enclosing the diagram, this area would be
everything outside the annuli from Ω1. This is the only time something so strange happens.

There are two very nice properties of the affinoid.

(i) Ω𝑛 ⊂ Ω𝑛+1. We will not formally define Ω, so we can not prove this, but the diagram makes
it clear. Look at [2] for a more careful construction.

(ii) ∪𝑛∈ℕ Ω𝑛 = ℋ𝑝. Or, the limit as 𝑛 goes to infinity makes the affinoid all of ℋ𝑝.

The big idea is that we can work with the affinoids, take limits (which work nicely), and end
up working with ℋ𝑝. There are two big reasons (other than the obvious ‘small things are nicer
to work with’) we like to work with affinoids over ℋ𝑝 directly. One of them is that affinoids
have a nice algebraic expression. we will cite a theorem from without proof from [2]:

Theorem: Let [𝑎, 1] be a representative of elements in ℤ𝑝/𝑝𝑛ℤ𝑝 and [1, 𝑏] be a representative
of elements in 𝑝ℤ𝑝/𝑝𝑛ℤ𝑝. Let 𝑥 = [𝑎, 1] or [1, 𝑏] depending on the circumstance. Let 𝑧 ∈ ℋ𝑝.
Then, |𝑥 − 𝑧| ∈ Ω𝑛 when:

(i) 𝑣𝑝(𝑧 − 𝑎) ≤ 𝑛 − 1
(ii) 𝑣𝑝(𝑧 − 1

𝑏) ≤ 𝑛 − 1 − 2𝑣𝑝(𝑏)
(iii) 𝑣𝑝(𝑧) ≥ 1 − 𝑛

We can find out which elements are in which affinoid by checking valuations in ℂ𝑝.
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The second reason is that there is a nice way to visualize ℋ𝑝 in a very different, but useful
way that helps illuminate many of the theorems that require knowledge of ℋ𝑝. The rest of the
paper is dedicated to this goal.

2 Lattices in ℚ𝑝
Lattices in ℝ𝑛 are easy to visualize. For example, we think of ℤ2. There are a few nice things
we take for granted that will not transition when talking about ℚ𝑝 lattices. For example, ℤ is
not dense in ℚ, but ℤ𝑝 is dense in ℚ. Or, countability; ℤ𝑝 is uncountable. Thus, there is no
nice accurate visualization to think about. Yet shockingly, the traditional visualization should
be sufficient, since we will be talking about linear transformations of the lattice, and this extra
complexity does not pose a problem.

we will be looking at lattices in ℚ2
𝑝. We say that two lattices, say 𝐿 with (𝑒1, 𝑒2) as a basis and

𝐿′ with (𝑒′
1, 𝑒′

2) are homothetic if the basis elements in 𝐿 can be rewritten as basis elements
in 𝐿′ scaled by a prime, or, (𝑒1, 𝑒2) = (𝑝𝑛𝑒′

1, 𝑝𝑛𝑒′
2) for 𝑛 ∈ ℤ. This is an equivalence relation,

where our relation is called homothety. Intuitively, our lattices are the same up to some prime
multiplication in both basis elements.

2.1 Distance Between Lattices
Let 𝐿1, 𝐿2 be two lattices. We aim to quantify the difference between 𝐿1, 𝐿2. To this end, fix
a basis {𝑣, 𝑤} for 𝐿1. We claim that there is a unique way of obtaining, from {𝑣, 𝑤}, a basis
for 𝐿2.

Indeed, by the invariant factor theorem, we can find integers 𝑎, 𝑏 ∈ ℤ such that {𝑝𝑎𝑣, 𝑝𝑏𝑤} is a
basis for 𝐿2. We define the distance between 𝐿1, 𝐿2 to be the distance between 𝑎, 𝑏; that is,

𝑑(𝐿1, 𝐿2) = |𝑎 − 𝑏|

That is, 𝐿2 can be obtained from 𝐿1 by scaling the two basis vectors independently and we
measure the distance from 𝐿2 to 𝐿1 by measuring how different the two scaling factors are.
The definition of homothety is that the two scaling factors actually coincide, so homothetic
lattices are actually distance zero apart. Thus, the measurement lifts in a well-defined way to
homothety equivalence classes: given 𝐿1, 𝐿2, we can define in the same way as above:

𝑑([𝐿1], [𝐿2]) = |𝑎 − 𝑏|

Even though our choice of 𝑎, 𝑏 ostensibly depends on 𝐿1, 𝐿2, their distance is actually
independent of the representatives 𝐿1, 𝐿2; if 𝐿1 ∼ 𝐿′

1 and 𝐿2 ∼ 𝐿′
2, then there exist 𝑧1, 𝑧2 ∈ ℚ𝑝

such that

𝐿′
1 = 𝑧1𝐿1 and 𝐿′

2 = 𝑧2𝐿2

so that if {𝑣, 𝑤} is a basis for 𝐿1 and {𝑝𝑎𝑣, 𝑝𝑏} is a basis for 𝐿2, then {𝑧1𝑣, 𝑧1𝑤} is a basis for
𝐿1 and

{𝑝𝑎𝑧2𝑣, 𝑝𝑏𝑧2𝑤} = {𝑝𝑎+𝑣𝑝(𝑧2
𝑧1

)𝑧1𝑣, 𝑝
𝑏+𝑣𝑝(𝑧2

𝑧1
)𝑧2𝑤}

is a basis for 𝐿′
2, giving

𝑑([𝐿′
1], [𝐿′

2]) = |(𝑎 + 𝑣𝑝(
𝑧2
𝑧1

)) − (𝑏 + 𝑣𝑝(
𝑧2
𝑧1

))| = |𝑎 − 𝑏|
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By placing the basis vectors of a lattice as the columns of a matrix, we can represent lattices
as 2 × 2 matrices over ℚ𝑝. We can describe lattices via a 2 × 2 matrix. For example, if 𝐿 is the
lattice generated by {2𝑒1, 𝑒1 + 3𝑒2}, then the corresponding matrix would be: (

2
0

1
3).

In this representation, lattices of distance one from ℤ2
𝑝 are either (

1
0

0
𝑝) or of the form (

𝑝
0

𝑎
1)

for some 𝑎 ∈ {0, 1, …, 𝑝 − 1}.

There are two very nice reasons to use matrix representations. First, any lattice in the same
homothety class will be conjugate by matrices in SL2(ℤ). So, 𝐿′ is in the same homothety class
as 𝐿 if: 𝐿′ = 𝛾𝐿𝛾−1 where 𝛾 ∈ SL2(ℤ).

Secondly, finding distances between a lattice and the lattice represented by the identity matrix
is very easy. If 𝐿 has associated matrix (

1
0

0
1), and 𝐿′ has associated matrix 𝛾, then:

𝑑(𝐿, 𝐿′) = 𝑣𝑝(det(𝛾(1
0

0
1)) = 𝑣𝑝(det(𝛾))

2.2 Trees
In this section, we discuss what kind of structure arises from the distance metric we’ve developed
on (homothety classes of) lattices. Since the metric is discrete, a natural representation is as
a graph. That is, we take the set of homothety classes as vertices and let “distance 1 apart”
define an adjacency relation. This gives us a graph, which we denote by 𝒯 and, following [2],
call “the Bruhat-Tits tree”. Of course, the designation of “tree” requires some justification. We
will soon show that the graph 𝒯 described here is indeed a tree, but first, let us take a moment
to visualize portions of 𝒯 in the cases 𝑝 = 2 and 𝑝 = 3.

2.2.1 Examples
Let 𝐿 = ℤ2

𝑝 = (1
0

0
1). Then, we will explicitly list out the distinct homothety classes of 𝐿 of

distance 1 and draw the associated graph.

For 𝑝 = 2, we get: 𝐿1 = (1
0

0
𝑝), 𝐿2 = (𝑝

0
0
1), 𝐿3 = (𝑝

0
1
1). For 𝑝 = 3, we add 𝐿4 = (𝑝

0
2
1).

𝑝 = 2

(𝑝
0

1
1)

(1
0

0
1)

(𝑝
0

0
1)(1

0
0
𝑝)

𝑝 = 3

(1
0

0
1) (𝑝

0
2
1)(𝑝

0
1
1)

(𝑝
0

0
1)

(1
0

0
𝑝)

Since distance can be arbitrarily large, this graph has countably many nodes and vertices. We
will draw one more complicated example for 𝑝 = 2 and include vertices of up to distance 2 away
from the center of the graph. Since we can label any vertex with the matrix (

1
0

0
1) via a change

of basis, each vertex will have 𝑝 + 1 neighbors, which we’ll prove later in this paper. This gives
us a graph with 17 nodes.
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Indeed, the number of nodes of distance 𝑑 away, say 𝑉 (𝑑), is given by the recurrence relation:
𝑉 (𝑑) = {1 if 𝑑=1

𝑝𝑉 (𝑑−1)+2 otherwise We’ll omit the calculation and display the final graph. We have:

(1
0

0
1) (𝑝

0
2
1)(𝑝

0
1
1)

(𝑝
0

0
1)

(1
0

0
𝑝)

(𝑝2

0
2
1)

(𝑝2

0
5
1)

(𝑝2

0
8
1)

(𝑝2

0
1
1)

(𝑝2

0
7
1)

(𝑝2

0
4
1)

(𝑝2

0
6
1)(𝑝2

0
3
1)

(𝑝2

0
0
1)

(𝑝2

0

2
3
1)(𝑝2

0

1
3
1)

(1
0

0
𝑝2)

I hope you can see some connection between the holes in the affinoid drawing and the top right
entry of each lattice. As we’ll explore in chapter 3, this connection goes deeper.

2.2.2 Why the Bruhat-Tits tree is really a tree
First, we offer a different perspective on the adjacency relation.

Claim. Two vertices [𝐿1], [𝐿2] are adjacent if and only if 𝑝𝐿2 ⊊ 𝐿1 ⊊ 𝐿2.

Proof.
(⟹) If 𝑑([𝐿1], [𝐿2]) = 1, then (by choosing appropriate representatives), we can assume

𝐿1 = ⟨𝑒1,𝑒2⟩ and 𝐿2 = ⟨𝑝𝑒1,𝑒2⟩. The inclusions 𝑝𝐿2 ⊊ 𝐿1 ⊊ 𝐿2 are then clear.
(⟸) Write 𝐿2 = ⟨𝑒1,𝑒2⟩ and 𝐿1 = ⟨𝑝𝑎𝑒1,𝑝𝑏𝑒2⟩ for some integers 𝑎, 𝑏. From 𝐿1 ⊊ 𝐿2, we obtain

𝑎, 𝑏 ≥ 0 and from 𝑝𝐿2 ⊊ 𝐿1, we obtain 𝑎, 𝑏 ≤ 1. The fact that both inclusions are proper
ensure that 𝑎 ≠ 𝑏, which implies |𝑎 − 𝑏| = 1, as needed. ∎

Claim. The Bruhat-Tits tree 𝒯 is indeed a tree.

Proof. We need to show 𝒯 is both connected and acyclic. We focus on the latter first. We borrow
this proof from [2].
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Suppose for the sake of contradiction that 𝒯 contains a cycle; let us take a minimal cycle
represented by a chain of lattices

𝐿′ ⊊ 𝐿𝑑 ⊊ 𝐿𝑑−1 ⊊ ⋯ ⊊ 𝐿1 ⊊ 𝐿

where 𝐿′, 𝐿 are homothetic and none of the other intermediate lattices are. Since 𝐿/𝐿 is a
cyclic module but 𝐿/𝐿′ is not, there must be some smallest index 𝑖 for which 𝐿/𝐿𝑖 is cyclic
but 𝐿/𝐿𝑖+1 is not. Then 𝐿𝑖−1/𝐿𝑖+1 is a length 2 module which is not cyclic, so 𝐿𝑖+1 = 𝑝𝐿𝑖−1;
that is, 𝐿𝑖+1 and 𝐿𝑖−1 are homothetic, contradicting minimality of the cycle.

Now, as for connectedness, let [𝐿], [𝐿′] be any vertices of the tree and consider a Jordan-Hölder
sequence for 𝐿/𝐿′:

𝐿′ = 𝐿𝑛 ⊂ 𝐿𝑛−1 ⊂ ⋯ ⊂ 𝐿0 = 𝐿

Then for each 0 ≤ 𝑖 < 𝑛, we have 𝐿𝑖/𝐿𝑖+1 a simple module of length 1 which implies
𝑑(𝐿𝑖+1, 𝐿𝑖) = 1. In other words, adjacent lattices in the composition series are adjacent in the
graph, and hence [𝐿′], [𝐿] are connected, as needed. ∎

2.3 Structural Properties of 𝒯
An important property of 𝒯 is that it is regular with degree 𝑝 + 1; that is, every vertex has
exactly 𝑝 + 1 neighbors. This gives 𝒯 a fractal-like, self-similar structure. In particular, no
particular vertex of 𝒯 is inherently more “special” than any other vertex. So, we might as well
designate a vertex of our choice to be “privileged”. We choose

𝑣0 = [ℤ2
𝑝] and 𝑒0 = {𝑣0, (

𝑝
0

1
1)𝑣0}

to be the privileged vertex and edge respectively. Note that the point 𝑣1 ≔ (𝑝
0

1
1)𝑣0 is

obtained from the natural action of linear transformations on lattices (simply apply the linear
transformation to every point on the lattice). It is easy to check that this multiplication is
compatible with the homothety relation.

2.4 Ends and ℚ𝑝
We define Ends(𝒯) to be the set of infinite, simple (as in, no repeated vertices) paths in
𝒯 quotiented by the relation of being “eventually equal”. In other words, two infinite paths
𝑃 = ([𝐿0], [𝐿1], …), 𝑄 = ([𝐿′

0], [𝐿′
1], …) are equal if they differ in only finitely many places.

Intuitively, each path is heading off towards a point “at infinity” and we consider two paths to
be the same if they end up at the same point.

We aim to construct a topology on Ends(𝒯). To that end, we define some basic neighbourhoods
𝑈(𝑒) for each edge 𝑒 ∈ 𝒯 as follows. Fix some edge 𝑒 = [𝐿0] ↔ [𝐿1]. We let

𝑈(𝑒) = {[𝑃 ] : 𝑃 = ([𝐿0], [𝐿1], …)}

To visualize 𝑈(𝑒), orient the edges of 𝒯 so that they radiate out from [𝐿0] and consider the
subtree 𝑆 of the resulting graph rooted at [𝐿1]: see Figure 1
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𝑒

[𝐿0]

[𝐿1]

𝑆

Figure 1: 𝑈(𝑒) is the set of paths eventually residing in 𝒮

The set 𝑈(𝑒) is the set of all paths that eventually reside in 𝑆.

Claim. The set

ℬ = {𝑈(𝑒) : 𝑒 is an oriented edge in 𝒯}

forms a basis for a topology on Ends(𝒯).

Proof. Given any path 𝑃  starting with the edge 𝑒, we clearly have [𝑃 ] ∈ 𝑈(𝑒), so ℬ covers
Ends(𝒯). Now, suppose 𝑃 ∈ 𝑈(𝑒1) ∩ 𝑈(𝑒2). We want to find some 𝑒3 such that 𝑃 ∈ 𝑈(𝑒3) and
𝑈(𝑒3) ⊆ 𝑈(𝑒1) ∩ 𝑈(𝑒2). Write 𝑃 = ([𝐿0], [𝐿1], …) and let 𝑆1, 𝑆2 be the subtrees corresponding
to 𝑒1, 𝑒2 as in the picture above. Let 𝑛 be the smallest integer such that [𝐿𝑘] is in both 𝑆1, 𝑆2
for all 𝑘 ≥ 𝑛. The existence of this 𝑛 is guaranteed by the existence of 𝑃 . Taking 𝑒3 to be the
edge from [𝐿𝑛] to [𝐿𝑛+1], we see that 𝑃 ∈ 𝑈(𝑒3) and 𝑈(𝑒3) ⊆ 𝑈(𝑒1) ∩ 𝑈(𝑒2).

Thus, ℬ forms a basis for a topology. ∎

So, we have these “ends” which are like points at infinity, and a topology on these ends; what
is this topology? Surprisingly, it is the projective line on ℚ𝑝!

The idea behind the correspondence is simple; orient 𝒯 as a directed graph moving away from
the privileged vertex 𝑣0 = [ℤ2

𝑝]. As we have seen, 𝒯 is (𝑝 + 1)-regular, so we associate the
(𝑝 + 1)-edges exiting each vertex with the digits 0, 1, …, 𝑝 − 1 and ∞. The sequence of edges
in a path then correspond to digits of a number in ℙ1(ℚ𝑝), with edges corresponding to ∞
resulting in a division by 𝑝 (or moving the decimal point to the right!).

Making this idea precise requires the notion of an inverse limit. First, because we are quotienting
out differences in the initial segment of a path, we can identify every element of Ends(𝒯) with
an infinite path starting at the privileged vertex 𝑣0 = [ℤ2

𝑝]. On any such path, a vertex 𝑤 of
distance 𝑛 away from 𝑣0 (i.e, points at the 𝑛th position on the path) are in bijection with
points of ℙ1(ℤ𝑝/𝑝𝑛ℤ𝑝). Reduction modulo 𝑝 gives a point in ℙ1(ℤ𝑝/𝑝𝑛−1ℤ𝑝), which in turn
corresponds to a point distance 𝑛 − 1 away (see [2]). In particular, we can do this in a way that
we get back a neighbor of 𝑤. These reduction maps alongside the points of 𝒯 thus form an
inverse system which gives

Ends(𝒯) = lim
⟵

ℙ1(ℤ𝑝/𝑝𝑛ℤ𝑝) = ℙ1(ℤ𝑝) = ℙ1(ℚ𝑝)
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3 The Connection
All of this effort has been for one big payoff. We can create an equivariant homeomorphism
between 𝒯 and the drawing in ℋ𝑝.

3.1 The Reduction Map
We first define the set 𝑃𝐺𝐿2(ℚ𝑝) = 𝐺𝐿2(ℚ𝑝)/𝑍2(ℚ𝑝) where 𝑍2(ℚ𝑝) is the set of scalar
transformations. Intuitively, this is the set of matrices with nonzero determinant where scaling
keeps you in the same equivalence class. This is similar to how homothety classes are unaffected
by scaling by 𝑝. In this case, it’s any constant.

We define a map red : ℋ𝑝 → 𝒯 that is equivariant under 𝑃𝐺𝐿2(ℚ𝑝). Meaning, that for any
subset Ω in ℋ𝑝 and any matrix 𝛾 ∈ 𝑃𝐺𝐿2(ℚ𝑝), we have that: red(𝛾Ω) = 𝛾 ⋅ red(Ω)

This is called the reduction map, and its definition is on the sets in ℋ𝑝. We have:

red(Ω1) = red(𝒜) = 𝑣0

red(𝒲0,1) = 𝑒0

There’s one more key thing about this reduction map. Let’s denote 𝒯𝑛 to be the subtree of 𝒯
with vertices at most 𝑛 − 1 away from 𝑣0. Then we have:

red(Ω𝑛) = red(𝒯𝑛)

Let’s visualize these three properties, using color coding to (hopefully) make everything clear:

ℋ3

𝒲∞

0 1

2

∞

𝒲0,1 𝒲1,1

𝒲2,1

𝒯2

(1
0

0
1) (𝑝

0
2
1)(𝑝

0
1
1)

(𝑝
0

0
1)

(1
0

0
𝑝)
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ℋ3

0
𝒲0,2

3

𝒲3,2
6

𝒲6,2

1

𝒲1,2

4

𝒲4,2
7

𝒲7,2
2

𝒲2,2

5

𝒲5,2
8

𝒲8,2

∞
𝒲∞,2

1
3

𝒲1
3,2

1
6

𝒲1
6,2

𝒯2

(1
0

0
1) (𝑝

0
2
1)(𝑝

0
1
1)

(𝑝
0

0
1)

(1
0

0
𝑝)

Rather than explicitly compute the reduction map on a particular annuli, note how we can
associate an annuli with a lattice as follows: Given an annuli 𝒲𝑎,𝑑, the associated lattice is either:

{{
{
{{(𝑝𝑑

0
𝑎
1) if 𝑎 ≠ ∞

(1
0

0
𝑝𝑑) if 𝑎 = ∞

Note that 𝑎 might need to be multiplied by a number not divisible by 𝑝. Then, we take the
edge beside this lattice that connects this lattice to 𝑣0.

One question we have to deal with is what is the inverse image of vertices under the reduction
map. While we will not formally define subaffinoids, the following picture should give a good
idea of what is happening:
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ℋ3

0 3

6

1 4

7

2 5

8

∞ 1
3

1
6

𝒯2

(1
0

0
1) (𝑝

0
2
1)(𝑝

0
1
1)

(𝑝
0

0
1)

(1
0

0
𝑝)

3.2 Ends and ℋ𝑝
As stated in Chapter 2, we can identify an infinite path in 𝒯 with a number in ℙ1(ℚ𝑝), or,
ℚ𝑝 ∪ {∞}. When taking a look at the diagram and the reduction map, we see that the infinite
path is related to the holes in our affinoid.

In particular, assume a path approaches a number 𝑎 ∈ ℙ1(ℚ𝑝). Let 𝑒𝑛 be an edge of distance
𝑛 away from 𝑣0 in that path. Then, lim𝑛→∞ red−1(𝑒𝑛) = lim𝑛→∞ 𝒲𝑎,𝑛.

This infinite path approaches the hole at 𝑎.

3.3 Meromorphic Functions
We can now define rigid analytic functions and meromorphic functions on ℋ𝑝.

Let 𝑒 be an edge of 𝒯 connecting 𝑣1 and 𝑣2. Define [𝑒] = {𝑒, 𝑣1, 𝑣2}, and call this the closed
edge. We define the standard affinoid at [𝑒] as follows:

𝒜[𝑒] ≔ red−1([𝑒])

We say a ℂ𝑝 valued function 𝑓 on ℋ𝑝 is rigid analytic if, for all edges 𝑒 ∈ 𝒯, the restriction of 𝑓
to 𝒜[𝑒] is a uniform limit with respect to the sup norm of rational functions on ℙ1(ℂ𝑝) having
poles outside of 𝒜[𝑒].

Finally, we say a ℂ𝑝 valued function 𝑓 on ℋ𝑝 is meromorphic if 𝑓 = 𝑔
ℎ  where 𝑔, ℎ are two rigid

analytic functions and ℎ is non-trivial.

This way of defining meromorphic functions recovers a key property we want from a 𝑝-adic
analogue of a complex meromorphic function: connectedness. If we were to define a 𝑝-adic
meromorphic function without ℋ𝑝 and affinoids, we don’t have connectedness since ℂ𝑝 is totally
disconnected.

With this definition of rigid analytic functions, we can glue together many small pieces of a
function into a large piece. This leads to a well defined notion of manifolds and sheaves. As a
result, we can discover 𝑝-adic analogues of many objects from ℂ, such as modular forms.
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