
p-adics and Their Problematic Antics
Get it?

Who? Fahad Hossaini

When? April 16, 2024



p-adics...

Who here knows anything about p-adics?



p-adic integers vs p-adic numbers

Just a formal note at the beginning.

We’ll be talking about p-adic integers, not p-adic
numbers for simplicity’s sake. While the difference is
minor, you can safely ignore this slide if what I said
doesn’t make sense.

As always, you can always ask questions, but for more
complicated topics, keep it until the end of the talk!



A Simple Premise

There’s many ways to introduce p-adics. Here’s one
way:

What if the rightmost digits were more significant than
the leftmost digits...



The Main Idea

Consider the number 495. Clearly, the most ’significant’
digit is the leftmost digit, 4.

But what if we decide to make the most ’significant’
digit the rightmost digit, 5?

How does this change anything, and how do we
formalize this?



Notation

The p in p-adic refers to a number. At our current level,
this means what base we are working with.

For example, a 5-adic number is a base 5 number.

The number 69 = 2 · 52 + 3 · 5 + 4
Thus, 69 = 234 in base 5. We’ll denote this as 2345.

123 = 4435 = 111203 = 3041 = 2347



Base p

We formally state a base p number here:

Let p be given. Then, the base p representation of a
number is:

a0 + a1 · p + a2 · p2 + · · · + anpn where 0 ≤ ai < p

Or:

n∑
i=0

aipn where 0 ≤ ai < p

Note that this is the reverse direction in which we read
numbers. So 1 + 2 · 4 + 3 · 42 = 3214.



Another (not-so easy but still relatively
easy) Example

Consider 2 in the 5-adics. We can write this out as:

25 = . . . 000025

The reason is because like decimals, the number extends
infinitely offwards to the left, but we cut it short.

We let addition, subtraction and multiplication be as we
expect them.

What is 2−1? i.e. What x has the property that
2x = 1? i.e. What x has the property that x + 2 = 0?

Before that, what is −2?



Another (not-so easy but still relatively
easy) Example Continued Part 1

−25 = . . . 444435.

Do you believe me? Let’s add them and check!



Another (not-so easy but still relatively
easy) Example Continued Part 1.5

−25 = . . . 444435.

Do you believe me? Let’s add them and check!

. . . 444435

+. . . 000025

=. . . 444455

=. . . 444505

=. . . 445005

=. . . 450005

=. . . 000005



Another (not-so easy but still relatively
easy) Example Continued Part 2

2−1
5 = . . . 222235.

Do you believe me? Let’s multiply them and check!



Another (not-so easy but still relatively
easy) Example Continued Part 2.5
2−1

5 = . . . 222235.

So you believe me. Let’s multiply them and check!

. . . 222235

×. . . 000025

=. . . 222205

×. . . 000025 + . . . 000115

=. . . 222005

×. . . 000025 + . . . 001015

=. . . 220005

×. . . 000025 + . . . 010015

=. . . 000015



...Maybe The Example Wasn’t So Easy

This is the short term goal: Understand negatives and
fractions in the p-adics.



Negatives

As stated, we can define subtraction the exact same way.
So let’s look at −25 in a different light. What is 0 − 2?

. . . 000005

−. . . 000025

=. . . 444455

−. . . 000025

=. . . 444435



-1

What is −1p?

When p = 5, we have that −15 = . . . 444445.

When p = 7, we have that −17 = . . . 666667.

So it seems that
−1p = . . . (p − 1)(p − 1)(p − 1)(p − 1)(p − 1)p.
Note, these are digits, not multiplication!



A Cool Trick

Take for example x = . . . 000135017 = 3676.

Let xi be the ith digit. Then, set −xi so that
xi + (−xi) = p − 1.

String these together to get:
x − 1 = . . . (−x5)(−x4)(−x3)(−x2)(−x1)p

Then, −x = x − 1 + 1 = . . . 666531657 + . . . 00017 =
. . . 666531667 = −3676.

So −x with p = 8 would be: . . . 777642778 = −5953



What Next?

Computing inverses is tedious and time-consuming. But
it helps us get a better understanding of fractions, so we
must trek onwards.



Concept

We find the inverse of an integer directly by repeated
division, but we’ll use modulo. Then, we call this inverse
the corresponding fraction. For example,
1
3 = 3−1 = 3−1

p.
Let’s find this inverse in the 10-adics! (Yes, we can use
non-prime bases, but you’ll see why we don’t in a bit...)



Find The First Digit!

Our target is the following number: . . . 0000110

We want the first digit to be 1. So, what x has the
following property: 3x ≡ 1 mod 10?



Keep Crunching!

Set x = 7. Then 3x = 21. So, our inverse must end
with 7.

Now, we want the second digit to be 0. But we already
have a 2 there! So, what x has the following property:
3x + 2 ≡ 0 mod 10 ⇒ 3x ≡ 8 mod 10?



Crunching...

So x = 6 works, and we get that 6x + 2 = 20. But wait,
we have a 2 again! So the same x works!

I claim 1
3 10 = . . . 6666710.

If we truncate this infinite expansion, indeed, we have:
666 . . . 667 · 3 = 2000 . . . 0001. Thus, this works!



Let’s Try A Similar Example

What is 2
3 10? We want it to end in 2...

But we have the advantage of working in base 10. What
number multiplied thrice is x0000 . . . 0002 for some x?

How about: x .00002? Well, x = 1 works! Then,
0.33334 · 3 = 1.00002!

So, 2
3 10 = . . . 3333410.



Arbitrary p. Arbitrary fraction.

Let’s say we want to find 11
4 5. How would we do so?

First, find 3
4 5 and add 2! Since arithmetic is well defined.

Our target number is . . . 0000035.



Solving for 4x = . . . 0000035

First digit: 4x ≡ 3 mod 5 ⇒ x = 2. Then,
4x = 8 = 135.

Second digit: 4x + 1 ≡ 0 mod 5 ⇒ x = 1. Then,
4x = 45. But here, x is in the fives column, and we add
with the previous term. We get: 405 + 135 = 1035.

Third digit: 4x + 1 ≡ 0 mod 5 ⇒ x = 1. Thus, the
process repeats.

In the end: 3
4 5 = . . . 1111125.

Thus, 11
4 5 = . . . 1111145.



Particular Inverses

Consider 7 in base 7. This is 107. What’s the inverse of
107? i.e. what number multiplied with 107 gives us
. . . 00017?

Unfortunately, No number multiplied with 0 gives us 1
under our rules. Unless... maybe we change the rules a
bit...

Solution: Add digits to the right. We won’t concern
ourselves with this. We’ll just look at Zp, the p-adic
integers.



Why is p Usually Prime?

What issues arise when we use non-prime bases?
Insolvability.

We can never have 2x ≡ 1 mod 10. Thus, 1
2 10 cannot

exist in Zp, the p-adic integers.
Recall: if p is prime, then gcd(x , p) = 1 if 1 < x < p.

While we can solve this problem by adding digits to the
right, another issue arises later down the line. We get a
form of non-zero dividers which destroys the
formalization of the p-adics. Thus, p needs to be prime.

TL;DR: While 10-adics exist, they aren’t useful to study.
Same with every composite number.



Time for a 15-second break!



Number Theory Time!

Let’s introduce another way you might think about
these p-adics.



Solving Polynomials Congruence Modulo p

We love congruence modulo in Number Thoery. A very
common problem is this: What are the solutions to
polynomials modulo p?

We look at a specific example. X 2 ≡ 2 mod pn where
we take n → ∞. We’ll use X to denote the polynomial
and reserve x for variables.

Fun Fact: This section of MAT315 is where I first heard
of p-adics in an academic context!



X 2 ≡ 2 mod p

Let p = 7 and start with n = 1. Then, what x solves
X 2 ≡ 2 mod 7?



X 2 ≡ 2 mod p2

The answer is 3.
Continue with n = 2. Then, what x solves X 2 ≡ 2
mod 72?



X 2 ≡ 2 mod p3

The answer is 10. We’ll do this one more time before we
list out all of the numbers.
Continue with n = 3. Then, what x solves X 2 ≡ 2
mod 73?



I need a funny title name here

The answer is 108.
We can keep continuing this process.
Enter, Mathematica



For[i = 1, i < 20,i++,
Print[Solve[x 2 == 2, Modulus − > 7i ]]]

x− > 3, x− > 4
x− > 10, x− > 39

x− > 108, x− > 235
x− > 2166, x− > 235
x− > 4567, x− > 12240

x− > 38181, x− > 79468
x− > 155830, x− > 667713

x− > 24862120, x− > 15491487
x− > 266983762, x− > 15491487

x− > 1961835256, x− > 15491487
...
...



Getting Our Sequence

More Mathematica Code:

L = {3,10,108,2166,4567,38181,155830,
1802916,24862120,266983762,1961835256,
5916488742,19757775943,116646786350,
116646786350,9611769806236,42844700375837,
275475214363044,6789129606004840}

More code:

For[i=1, i<20, i++, Print[BaseForm[Part[L,i],7]]]



. . . 00000000000037

. . . 00000000000137

. . . 00000000002137

. . . 00000000062137

. . . 00000000162137

. . . 00000002162137

. . . 00000012162137

. . . 00000212162137

. . . 00004212162137

. . . 00064212162137

. . . 00664212162137

. . . 02664212162137

. . . 12664212162137



p-adics Unlock New Worlds

So,
√

2 exists in the 7-adics.

We denote the 7-adics as Q7 (p-adic numbers) or Z7
(p-adic integers).

So,
√

2 = . . . 12664212162137.

And indeed,
12664212162132

7 = 20156216344100000000000027

And indeed, −
√

2 = 54002454504542
7 =

430241642501200000000000027

Let’s find out what Q7 is!



Another 15-second break



Absolute Values

We continue in what seems a very distant land...



Properties of an Absolute Values

Given a field F, define a function | · | : F → R.
| · | is an absolute value if it has the following properties:
Positive Definiteness
Homogeneity
Triangle Inequality
We’ll let our field be Q for any applications.



Positive Definiteness

For all x ∈ F, | · | is positive definite if:

|x | ≥ 0 and |x | = 0 ⇔ x = 0



Homogeneity

For all x , y ∈ F, | · | is homogeneous if:

|xy | = |x ||y |



Triangle Inequality

For all x , y ∈ F, | · | has the Triangle Inequality if:

|x + y | ≤ |x | + |y |



Why Is This Useful?

Traditionally, a norm denotes ’distance’ of some kind.
And absolute value is a norm. But is there any way we
can define ’distance’ in a meaningful way so that
leftmost digits are insignificant?



The Traditional Absolute Value

The traditional absoulte value, which we’ll denote | · |∞
is defined as follows:

|x |∞ =
{

x x ≥ 0
−x x < 0

This absolute value tells us how far away we are from 0.
Namely, our leftmost digits have the greatest impact.



Convergence

We need to talk about convergence to understand how
we can create an alternate absolute value.

We say a sequence (xn) converges to some point x if:
for all ϵ > 0, we can find a natural number N so that:
|xn − x | < ϵ for all n > N.

i.e. Our sequence of numbers after some point N has a
small ’distance’ to x , the point we are converging to.

We want some notion of convergence so that our
rightmost digits are most significant...



What Do We Want?

We’ll drop the purple text color for numbers in base p.
No more hand holding.

We want
| . . . 11110p| > | . . . 11100p| > | . . . 11000p| > · · · .
However, this depends on our choice of p
(10000 = 411047). So our absolute value will depend on
p.



A Suggestive Sequence

There’s one particular sequence that very well describes
what we want.

Let p be given. Consider pn for n ≥ 0. We get:

p0 = 1p

p1 = 10p

p2 = 100p

p3 = 1000p

p4 = 10000p
...

pn = . . . 000p



How Do We Frame This?

So we want pn → 0. i.e. |pn| → 0. And maybe you
notice that we can attribute the number of zeroes some
value. Now we’ll define the p-adic absolute value.



The p-adic Absolute Value

Let p be prime. Let x ∈ Q. Then write x = pr · x ′ so
that p ∤ x ′. i.e. r is the exponent of p in the prime
factorization of x . Then vp(x) = r . This is called the
valuation.

Then we claim that |x |p = x−vp(x) is an absolute value.
We call this the p-adic absolute value.

We’ll postpone the proof until later.



Why Does The p-adic Absolute Value
Work?

There’s a little bit of magic that goes into constructing
this absolute value from scratch. As in, why it’s a
negative exponent or why is there’s an exponent. I’ll
keep that mystery hidden (we can chat later if you
want). I’d rather investigate how this works.



Here’s Why It Works
Consider the sequence pn again. Recall, |x |p = pvp(x).
Then:

|p0|p = |1|p = p0 = 1

|p1|p = |10p|p = p−1 = 1
p

|p2|p = |100p|p = p−2 = 1
p2

|p3|p = |1000p|p = p−3 = 1
p3

|p4|p = |10000p|p = p−4 = 1
p4

|p5|p = |100000p|p = p−5 = 1
p5



Correlation

The p-adic absolute value tells us how many zeroes
there are in the base p expansion of our number!

This is partially the truth. It gets quite complicated for
certain rationals, and this ’intuition’ doesn’t explain how
divergence to p-adic infinity works.

This absolute value tells us that 1
pn should diverge

p-adically, but once again, the inverse doesn’t exist.



Proving The p-adic Absolute Value

Positive Definiteness: Clearly, |x |p = pvp(x) ≥ 0.

If x = 0, then vp(x) = ∞ ⇒ |x |p = p−∞ = 0. Yes, this
is allowed.
If x ̸= 0, then vp(x) = c < ∞ ⇒ |x |p = pc ̸= 0.

Thus, | · |p is Positive Definite



Proving The p-adic Absolute Value

Homogeneity. Let x , y ∈ Q. Then,

|x |p|y |p = pvp(x) · pvp(y) = pvp(xy) = |xy |p



Proving The p-adic Absolute Value

Triangle Inequality: We’ll prove a stronger version, the
Strong Triangle Inequality: |x + y |p ≤ max{|x |p, |y |p}.

We’ll first prove the Strong Triangle Inequality for
integers. Let x1, x2 ∈ Z. Then we’ll show that the
Strong Triangle Inequality will hold.



Proving The p-adic Absolute Value

Note that since integers will only have non-negative
exponents, we must have that: |x1 + x2|p ≤ 1. Let
|x1 + x2|p be given so that vp(x1 + x2) = i . Then,
x1 + x2 ≡ 0 mod pi and x1 + x2 ̸≡ 0 mod pi+1.

Thus, either (a) pi+1 ∤ x1 and pi+1|x2,
(b) pi+1 ∤ x2 and pi+1|x1
or (c) pi+1 ∤ x1, x2.
In case (a), |x1|p ≤ 1

pi .

In the case of (b), |x2|p ≤ 1
pi .

In the case of (c), |x1|p ≤ 1
pi .



Proving The p-adic Absolute Value

Now, prove the Strong Triangle Inequality for all
rationals. Let x1, x2 ∈ Q. Then, we can write x1 = a

b
and x2 = c

d with a, b ∈ Z and c, b ∈ N.
Then, we have:



Proving The p-adic Absolute Value

|x1 + x2|p =
∣∣∣∣ a
b + c

d

∣∣∣∣
p

=
∣∣∣∣ad + bc

bd

∣∣∣∣
p

=
∣∣∣∣ 1
bd

∣∣∣∣
p

· |ad + bc|p

≤
∣∣∣∣ 1
bd

∣∣∣∣
p

· min{|ad |p, |bc|p}

= min{
∣∣∣∣ ad
bd

∣∣∣∣
p

,

∣∣∣∣ bc
bd

∣∣∣∣
p
}

= min{
∣∣∣∣ a
b

∣∣∣∣
p

,

∣∣∣∣ c
d

∣∣∣∣
p
}

= min{x1, x2}



A Curious Case Of Choosing Canonical
Constants

The astute among you might have noticed something
interesting. The base of the absolute value doesn’t
matter!

Specifically, we could have defined |x |p = cvp(x) for any
c > 1. So why choose p? If you’re curious, ask me later!



The Upshot

This absolute value is a norm. That means metrics.
That means topology on a ’well behaved’ space.

Here’s what it’s all been building up to.



p-adic Topology

p-adic Topology
Something Witty

Who? p-adic Topology

When? p-adic Topology



O7s in the chat plz

I’m so sorry my dear first-years. This is the conclusion
of the talk. So bare with me for a few more slides.



Motivating Qp

There’s two ways to construct Qp, the p-adic numbers.

1. Start with Zp and add in the inverses.

2. Start with Q and complete it with respect to the
metric. I prefer method 2 because it’s all analysis, no
algebra. i.e. only MAT257 is required.



Completion

Informally, we take Q and represent it as an equivalence
class of limit points of sequences inside Q. Then, we
add all the Cauchy sequences that exist using the
p-metric to Q to get Qp.

If (xi) → x , then ∥x∥p = lim
i→∞

∥xi∥p. Since xi ∈ Q, this
is well defined.

So Qp is the equivalence classes of limits of all Cauchy
sequences.



Interesting Properties

Now that Qp is a complete metric space, what
interesting properties can we say about Qp for all prime
p?

1 Every ball is clopen.
2 Let x , y ∈ Qp and r ∈ R. If y ∈ B(x , r), then

B(x , r) = B(y , r).
3 Qp is totally disconnected. i.e. Only singletons are

connected.
4 Zp is the unit ball of Qp centered at 0 for all p.

The first three properties come directly from the Strong
Triangle Inequality. And metric spaces with the Strong
Triangle Inequality are called ultrametric spaces and the
metric is considered an ultrametric. The fourth property
is just fun.



That was long...

That’s it! Thanks for taking some time out of your day
to enjoy some p-adics!
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