Answers are found at the bottom of the worksheet on a seperate page.
Question 1: Let $f: A \rightarrow B$. Which of the following two statements means that f is injective? What does the other one mean? Write the contrapositives of both implications.

1. $\forall x_{1}, x_{2} \in A$, if $x_{1}=x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)$.
2. $\forall x_{1}, x_{2} \in A$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

Question 2: Give specific points a, b that show that these functions are not injective:

1. $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x^{2}}$.
2. $g:\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ given by $g(x)=\cos (x)$.
3. $h: \mathbb{N} \rightarrow \mathbb{R}$ given by $h(n)=(-1)^{n}$.

Question 3: Give specific points y the codomain of these functions that show that these functions are not surjective:

1. $f: \mathbb{R} \backslash\{0\} \rightarrow[0, \infty)$ given by $f(x)=\frac{1}{x^{2}}$.
2. $g:\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ given by $g(x)=\cos (x)$.
3. $h: \mathbb{N} \rightarrow[-1,1]$ given by $h(n)=(-1)^{n}$.

Question 4: Show that there are 8 different functions with domain $\{1,2,3\}$ and codomain $\{0,1\}$.
Hint: Write your function in the following form: $(f(1), f(2), f(3))$. Then, counting these functions will be easier.

Question 5: Show that there are 6 different surjective functions with domain $\{1,2,3\}$ and codomain $\{0,1\}$.

Question 6: Show that there are NO injective functions with domain $\{1,2,3\}$ and codomain $\{0,1\}$.
Question 7: Challenge: Generalize the 3 previous exercises to functions with domain $\{1,2, \ldots, 10\}$, and codomain $\{0,1\}$.
Question 8: We'll be exploring an interesting concept in this question.
First, we recall that the set $\{1,2,3\}$ has $2^{3}=8$ subsets. Keep this in mind.
Second, we introduce something called the indicator function. Define $f: A \rightarrow\{0,1\}$ by the following rule: $f(x)=1$ if $x \in A$. Otherwise, $f(x)=0$.

Now, let $A \subseteq\{1,2,3\}$. Do you see the relation between subsets and the previous questions via this indicator function?

As an example, let $A=\{1,2\}$. Then, $f(1)=1, f(2)=1, f(3)=0$. Concatenating these together yields the following binary string: 110. Or, if we think this as a tuple, we get: $(1,1,0)$.

Now, the question. Show that there's a bijection between subsets of $\{1,2,3\}$ and all possible functions that map $\{1,2,3\}$ to $\{0,1\}$. You'll probably have to use the indicator function for this.
As an extra challenge, generalize this to subsets of a set of form: $\{1,2, \ldots, k\}$ and all possible functions that map $\{1,2, \ldots, k\}$ to $\{0,1\}$.

Question 9: Let $A=\{1,2,3\}$ and $B=\{4,5,6\}$. For each condition, give an example of functions $f_{i}: A \rightarrow B$ and $g_{i}: B \rightarrow A$ with the following properties, or explain why it is impossible.

1. g_{1} is the inverse of f_{1}.
2. $f_{2} \circ g_{2}(x)=g_{2} \circ f_{2}(x)$ for all x.
3. $f_{3} \circ g_{3}(x)=x$ for all $x \in B$.
4. The range of $g_{4} \circ f_{4}$ has 2 elements, but the range of $f_{4} \circ g_{4}$ has 1 .
5. The range of $g_{5} \circ f_{5}$ has 3 elements, but the range of $f_{5} \circ g_{5}$ has 2 .

Answer 1:

1. is the definition of being a function. It is vertical line test (if you have seen this in any other classes). The contrapositive is:
$\forall x_{1}, x_{2} \in A$, if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, then $x_{1} \neq x_{2}$.
2 . is the definition of injective. The contrapositive is:
$\forall x_{1}, x_{2} \in A$, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Answer 2:
2. Example: $a=1$ and $b=-1$.
3. Example: $a=\frac{-\pi}{4}$ and $b=\frac{\pi}{4}$.
4. Example: $a=2$ and $b=4$.

Answer 3:

1. Example: $y=0$, because $\frac{1}{x^{2}}>0$.
2. Example: $y=2$, because $\cos x \leq 1<2$ for all $x \in \mathbb{R}$.
3. Example: $y=0$, because h only has outputs -1 and 1 .

Answer 4:

Proof. Write functions as $f(1) f(2) f(3)$ instead of $(f(1), f(2), f(3))$. So for example 110 is the function $f(1)=1, f(2)=1, f(3)=0$. This notation suggests the (true) fact that the collection of all functions from $\{1,2, \ldots, n\}$ to 0,1 is the collection of all binary strings of length n. This makes counting easier.

$$
000,001,010,011,100,101,110,111
$$

Answer 5:

Proof. Everything above works EXCEPT 000 and 111. This reminds us of this important principle of counting: Instead of counting the good things, you can count the bad things.

Answer 6:

Proof. This is impossible because the domain has 3 elements, but the codomain has only 2 choices. One of the choices must be repeated (by the pigeonhole principle).

Once again, 'size' of sets play a huge role in determining what type of functions exist from one set to another.

Answer 7:

Proof. There are 2^{n} many functions, and all but 2 of them are surjective. Namely, the function that sends everything to 0 and the function that sends everything to 1 . There are never any injective functions.

Answer 8:

We'll do the general case.

Proof. Let $\{1,2, \ldots, k\}$ be given.
Define B to be the set of all binary strings of length k. By binary strings, we mean k many 0 s and 1 s . For example, if $k=5$, then $B=\{00000,00001,00010, \ldots, 11110,11111\}$.
Now, consider all subsets of $\{1,2, \ldots, k\}$. We'll form a bijection from these subsets to B.
We'll use the indicator function to build our bijection. Let $A \subseteq\{1,2, \ldots, k\}$. If $x \in A$, then $f(x)=1$ and 0 otherwise.

Then, concatenate $f(1) f(2) \cdots f(k)$. Call this binary string b_{A}.
Now, $g: \mathcal{P}(\{1,2, \cdots, k\}): B$ where $\mathcal{P}(\{1,2, \cdots, k\})$ is all subsets of $\{1,2, \cdots, k\}$ defined by $g(A)=b_{A}$.
I claim this is a bijective function.
Regarding injective, by contrapositive, if $A_{1} \neq A_{2}$, then some $x \in A_{1}$ is not in A_{2} or vice versa. Thus, $f(x)=1$ for A_{1} but $f(x)=0$ for some A_{2} or vice versa. Thus, $b_{A_{1}} \neq b_{A_{2}}$. Thus, this function is injective.
Regarding surjective, let $b \in B$ be a binary string of length k. Then, let b_{i} be the $i^{t h}$ digit of b. If $b_{i}=1$, then include i in A. Otherwise, let $i \notin A$. Then, by defintion, we have that $b_{A}=b$ as every digit is covered. Thus, the function is surjective and by extension, bijective.

Now, we'll show that the possible functions from $\{1,2, \ldots, k\}$ to $\{0,1\}$ is also bijective to B.
However, we can write functions as $f(1) f(2) \cdots f(k)$ and we showed before that this type of concatenation results in a bijective function.

Finally, since we can find a bijection from $\mathcal{P}\{1,2, \ldots, k\}$ to B and from B to all possible functions between $\{1,2, \ldots, k\}$ and $\{0,1\}$, we must have that we can create a bijective function from $\mathcal{P}\{1,2, \ldots, k\}$ to all possible functions between $\{1,2, \ldots, k\}$ and $\{0,1\}$.

Answer 9:

1. Possible (easily).
2. Impossible because they don't have the same domain!
3. Possible if g_{3} is the inverse of f_{3}.
4. Possible: $f(1)=f(2)=4, f(3)=6$ and $g(4)=g(6)=1, g(5)=2$.
5. Impossible since the first condition forces both functions to be bijections. (This can be seen by contradiction.)
