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We Have Returned!

We’re back to the land of functions, and now, we’ll
formally show how to prove bijections!

We’ll go through the topic as if we didn’t cover it in the
functions video. So don’t be worried if you forgot what
this word means!



Motivation

Functions are everywhere. So, we want some general
ways to describe their properties.

Additionally, a really important thing is being able to
invert functions.

I’ll play a clip from the functions video to help us
acheive both of these goals.



Injectivity

Let f : A → B. Then, f is injective when elements from
A uniquely map to elements in B. For example, if
3 ∈ B, there’s at most one element in A that maps to 3
(if nothing maps there, no issues).

How do we formally describe this? Consider the
following definition:

Definition Injectivity: We say f is injective if ∀x1, x2 ∈ A, we have
that: x1 ̸= x2 ⇒ f (x1) ̸= f (x2).
Intuitively, this means: For all pairs x1, x2 from our
input set A, if the inputs aren’t equal, then the outputs
will never be equal.

We won’t say one-to-one, but rather injective. If
one-to-one makes more sense to you, use that for your
own understanding.



Example

Example Let f : R → R be defined so that f (x) = 2x + 2 or,
x 7→ 2x + 2. Prove that this function is injective.

Proof. Let x1 ̸= x2 be given from R. Then, we have:

x1 ̸= x2

2x1 ̸= 2x2

2x1 + 2 ̸= 2x2 + 2
f (x1) ̸= f (x2)

Since x1, x2 were arbitrary, this holds for all x1 ̸= x2.
Thus, f is injective.
Note: We can’t start from what we want to prove, thus
we started from x1 ̸= x2 rather than f (x1) ̸= f (x2).



Another Way To Prove

Example Let f : R → R be defined so that f (x) = 2x + 2 or,
x 7→ 2x + 2. Prove that this function is injective.
Let’s prove this by contradiction.

Proof.
Assume for the sake of contradiction that there exists a
pair of x1 ̸= x2 from R so that f (x1) = f (x2). We have:

f (x1) = f (x2)
2x1 + 2 = 2x2 + 2
x1 = x2

But this breaks our assumption that x1 ̸= x2. Thus, we
must have that f (x1) ̸= f (x2)

Finally, contrapositive is next.



Contrapositive

Example Let f : R → R be defined so that f (x) = 2x + 2 or,
x 7→ 2x + 2. Prove that this function is injective.

Proof. We’ll prove the contrapositive. Namely,
∀x1, x2 ∈ R, f (x1) = f (x2) ⇒ x1 = x2.
Let f (x1) = f (x2). Then we have:

f (x1) = f (x2)
2x1 + 2 = 2x2 + 2
x1 = x2

Since x1, x2 are arbitrary, we have shown that f is
injective.

Notice, the contradiction and contrapositive are pretty
similar, so stick with contrapositive as it’s much clearer.



One Final Example

Example Let f : (0, ∞) → R be given by f (x) = ex . Show that f
is injective.

Proof. We’ll prove this by contrapositive. Let x1, x2 ∈ (0, ∞).
Then, we’ll show that if f (x1) = f (x2), then x1 = x2.
We have:

f (x1) = f (x2)
ex1 = ex2

ln(ex1) = ln(ex2)
x1 = x2

Thus, f is injective.



But This Isn’t The Whole Story

We still need one more property to invert functions
properly.

Yes, I’m recycling content: Here’s another clip.



Surjectivity

Let f : A → B. Then, f is surjective when elements
from A map to every element in B. Or, the codomain of
f is the range of f .

How do we formally describe this? Consider the
following definition:

Definition Surjectivity: We say f is surjective if ∀y ∈ B, ∃x ∈ A
such that f (x) = y .
Intuitively, this means: For every element y from our
output set B, we can find some input element x ∈ A so
that f (x) = y .

We won’t say onto, but rather surjective. If onto makes
more sense to you, use that for your own understanding.



Example

Example Let f : R → R be defined so that f (x) = 2x + 2 or,
x 7→ 2x + 2. Prove that this function is surjective.

Proof. Let y ∈ R be an arbitrary element in our codomain. We
claim that choosing x = 1

2y − 1 shows that f (x) = y .
To see this, consider the following:

f (x) = 2x + 2

= 2(1
2y − 1) + 2

= y − 2 + 2
= y

Since f (x) = y for every value of y , our function is
surjective.



Finding x

Unfortunately, there’s no contrapositive or ’other’ way
to prove this. However, finding our value of x might be
challenging...

In our rough work, once we’re convinced a function is
surjective, assume it’s invertible. Then, invert the
function and find our value of x .

Note: if the function isn’t injective, then we’ll get many
possible values of x . We can choose any one of the x
values.



A Tough Example

Example Show that f : R → [−0.25, ∞) given by f (x) = x2 + x
is surjective.
Let’s start with our rough work: First, we’ll convince
ourselves this function is surjective.

We can use calculus to see that both x = 1
2 is our

critical point.

Since a smaller x value and a larger x value is larger
than at our critical point, the minimum is acheived at
f (−0.5) = −0.25.

Since the codomain is above or at our minimum value
and the function is increasing, we must have that every
point is reached in our codomain.



More Rough Work

While the ’proof’ on the previous slide somewhat
rigorous, some people don’t want to see you succeed, so
we’ll have to prove surjectivity formally through
definition without using calculus.

Now, we’ll assume that y = x2 + x is invertible for the
sake of our rough work. Flipping x and y , we get:
x = y2 + y ⇒ y2 + y − x = 0

Now, we’ll have to use the quadratic formula. Since this
yields two solutions, we can choose either. We have:
y = −b±

√
b2−4ac

2a

In our case, choose a = 1, b = 1, c = −x . Then,
y = −1±

√
1+4x

2 .



Uhhhh...

You’ll never get something this annoying, but the
process is as follows. Usually, the process won’t require
this many steps. Many logarithms or linear function.

Now, let’s prove our surjectivity claim:



Proof

Proof. Let y ∈ [−0.25, ∞). Then, we claim that
x = −1+

√
1+4y

2 works. Note, in our rough work, we
swapped x and y so here we swap it back and choose
one of the solutions. We have:

f (x) = x2 + x

=
(

−1 +
√

1 + 4y
2

)2

+ −1 +
√

1 + 4y
2

= 1 − 2
√

1 + 4y + 1 + 4y − 2 + 2
√

1 + 4y
4

= 4y
4

= y

Thus, f is surjective.



Note

Once again, usually surjective proofs won’t be this bad.
But the process is the same. If you can’t find the proper
value of x , follow these steps. Ensure it’s surjective,
invert, choose one of the solutions and prove.



Last Step

More recycled content headed your way: Now we can
invert functions.



Bijectivity

Let f : A → B. Then,

Definition Bijectivity: We say f is bijective when f is both injective
and surjective.

We call f −1 the inverse function, where f −1 : B → A so
that f (f −1(x)) = f −1(f (x)) = x .

Intuitively, this means: For every element y from our
output set B, can be mapped directly to some input
element x ∈ A so that f (y) = x and this mapping is a
function.

People call bijective functions both one-to-one and onto,
rather than coming up with a new word. As always,
we’ll stick to bijective.



Indeed...

We’ve already shown that the function
f : R → R, f (x) = 2x + 2 is already a bijective function
since we showed it’s both injective and surjective.

Interestingly, the inverse function will always be how you
prove surjectivity, but with the x and y flipped. In this
case, f −1 = 1

2x − 1.



Now, A Barrage

Decide whether the following functions are injective,
surjective, both or neither.

Example f : N → N, f (x) = x + 1

Example f : Z → Z, f (x) = x + 1

Example f : R → R, f (x) = x2

Example f : Z → N, f (x) = |x | + 1



Answers!

Example f : N → N, f (x) = x + 1 is only injective. Nothing maps
to 1.

Example f : Z → Z, f (x) = x + 1 is bijective. Prove it!

Example f : R → R, f (x) = x2 is neither. Nothing maps to −1,
and two values map to 1

Example f : Z → N, f (x) = |x | + 1 is surjective. Assume you can
invert the function and try to find a valid value for x .



Proof Sketch

For 1 and 2, x1 ̸= x2 ⇒ x1 + 1 ̸= x2 + 1 ⇒ f (x1) ̸= f (x2)

For surjectivity in 2 and 4, choose x = y − 1.


