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Formally, Cardinality

If A = {1, 5, 8}, then |A| = 3. We say that the
cardinality of A is 3.

The reason we don’t use the word ’size’ is because we
allow infinity to be a valid ’size.’ At least, that’s what
makes the most sense to me (yes, I was never told
either, and I may be wrong, but at least I’m trying to
make it make sense.)



Countability

Any finite set will have finite cardinality. But what
about infinite sets?

Let’s look at the simplest infinite set, N.

We say that N has countable cardinality by definition,
or, there are countably many elements in N.

The reason we say N has countable cardinality is
because we can ’count’ or list or enumerate or find every
element in N. We can devise an algorithm to find every
element, despite it being an infinite set.



Intuition

The reason we say N has countable cardinality is
because we can ’count’ or list or enumerate or find every
element in N. We can devise an algorithm to find every
element, despite it being an infinite set.

The algorithm in this case is counting. 1, 2, 3, and so on.

I hate how the word ’countable’ isn’t intuitive. I much
prefer words like enumerable or iterable or listable.
These make sense. Despite the set being infinite in size,
we can devise an algorithm to enumerate or iterate or
list every element.



Even Numbers

Let E = {2, 4, 6, . . .} = {2n : n ∈ N}.

What’s |E |?

While E ⊊ N, we can devise an algorithm to list every
even number and E is infinite. Thus, |E | = |N|. Just
add two starting at 2.



Formal Proof

But this isn’t a proof. How could we prove that
|E | = |N|?

Well, if N is countable/enumerable/iterable/listable and
so is E , then we should be able to come up with a way
to match or pair even numbers and naturals together.

Wait, this just sounds like a bijection! We literally
match every even number with every natural number!



Bijection Proof

We’ll show that f : N → E given by f (x) = 2x is a
bijection. Note, you can also do the function from
E → N, the inverse, since it’s also a bijection.

Proof. Start with injectivity. We’ll use contrapositive. Let
f (x1) = f (x2). We want to show that x1 = x2. We have:

f (x1) = f (x2) ⇒ 2x1 = 2x2 ⇒ x1 = x2

Now, surjectivity. Let y ∈ E be an arbitrary even
number. Then, let x = 1

2y . Since y is even, x ∈ N.
Now, we have: f (x) = 2x = y



Here’s The Cool Part

If we instead set E = {0, 2, 4, . . .}, we still have that
|E | = |N|.

Essentially, infinity is so powerful, that adding or
removing finitely many things has no impact.



Injectivity, Surjectivity and Cardinality

Indeed, our logic from last video still makes sense. If
|A| ≤ |B|, we can find an injective function from A to
B. Likewise, if |A| ≥ |B|, we can find a surjective
function from A to B.

We let countable cardinality be greater than any finite
cardinality. Then, this conclusion still holds. We can
always find an injective function from finitely many
objects to countably many objects and find a surjective
function from countably many objects to finitely many
objects.

And the reverse is true, just like bijections. If f : A → B
can never be surjective, then |A| < |B|. Thus, f can
inform us on the cardinality of A and B.



Infinite PHP Part 1

Consider the set A = {1, 3, 6, 10, 15, 21, 28, 36, 45, . . .}.
What can we say about the ending digits of the
elements in A without calculations?

A has countably many elements as |A| = |N|. Prove this
on your own! But there are 10 possible ending digits.
Can we extend PHP to come up with an interesting
conclusion?

We can. Countably many elements from A will share
their ending digit.



Infinite PHP Part 1 Second Half

”Countably many elements from A will share their
ending digit.” Why is this true?

If we have finitely many boxes but infinite pigeons, we
can’t have a finite amount of pigeons in every box! Or
else, we wouldn’t have had infinitely many pigeons!

So one box must have infinite pigeons while the rest
could or could not have infinite pigeons.

And here, by infinite, we mean countably many pigeons.



Intuition

Imagine we have one box and infinitely many pigeons.
Well, all the pigeons must go to that one box.

What about two boxes? If both boxes had finitely many
pigeons, then where do the rest of the pigeons go?

And we can keep extending this logic to every natural
number, or every finite number.



A Slightly Harder Example

Okay, no more pigeons. Show that |Z| = |N|.

This is equivalent to finding a function f : N → Z where
f is bijective.

First, we think about how we would list out all elements
in Z.



Why Z Is Countable

We usually write out Z = {. . . , −2, −1, 0, 1, 2, . . .}. But
how would we list every element?

We can’t count from 1 to ∞ and then turn around
when we reach ∞ because we’ll never reach ∞. Or, this
method can’t list out every element in Z because we’re
stuck going forward.

So, what if we zig-zag? For example,
0, 1, −1, 2, −2, 3, −3, . . .? We’ll reach every number and
we don’t get this issue of needing to turn around.
Essentially, since the ... goes only in one direction just
like N, we’re fine!



Mapping N to Z

We just said Z = {0, 1, −1, 2, −2, 3, −3, . . .}.
Likewise, N = {1, 2, 3, 4, 5, 6, 7, . . .}

So how about the following map:
f (1) = 0, f (2) = 1, f (3) = −1, f (4) = 2,
f (5) = −2, f (6) = 3, f (7) = −3, . . .?

And this works. Now, to formally prove this, we need to
define f (x). While you could argue this without a formal
rule for f (x), it’s hard to do and not too rigorous.



Proving |Z| = |N|

Let f : N → Z given by

f (x) =


0 if x = 1
x
2 if x is even
− x−1

2 if x is odd and x ̸= 1

We’ll show that f is bijective.



Injectivity

Proof. Start with injectivity. Let x1 ̸= x2. We have three cases.

If x1 = 1, then f (x1) = 0. If x2 is even, then f (x2) ̸= 0
as we divide by two. If x2 is odd but not equal 1, then
f (x2) = − x−1

2 < 0.

If x1 is even, then f (x1) > 0. Thus, x2 must be even.
But then: x1 ̸= x2 ⇒ x1

2 ̸= x2
2 ⇒ f (x1) ̸= f (x2)

If x1 is odd and not equal 1, then f (x1) < 0. Thus, x2
must also be odd and not equal 1. Then,

x1 ̸= x2 ⇒ −(x1 − 1) ̸= 1(x2 − 1) ⇒ − x1−1
2 ̸= − x2−1

2 ⇒
f (x1) ̸= f (x2)

In all cases, f is injective.



Surjectivity

Proof. Continued.
We’ll show f is surjective. Let y ∈ Z. We have three
cases.

If y = 0, then x = 1 works as f (x) = f (1) = 0 = y .

If y is positive, then x = 2y works. Note that x is even
and a natural number. Then,
f (x) = f (2y) = 1

2(2y) = y .

If y is negative, then x = −2y − 1 works. Note that x is
odd and since 2y < −1, we have that −2y > 1. Thus
x = −2y − 1 > 0 so x is a natural number. We have:
f (x) = f (−2y − 1) = − (−2y−1)+1

2 = y .

Thus, f is surjective and therefore, bijective. So,
|N| = |Z|.



Notes

1. When working with a piecewise function, the proofs
have cases. We need to consider all cases or all possible
definitions of f .

2. You might have noticed that in my surjectivity
proofs, I show that x is in our domain. We’ve never had
to deal with this before since the domain and codomain
so far have always been R.

I’m being extra careful with my proofs. You should be
as careful as possible when doing proofs, granted you
have time.


