Answers are found at the bottom of the worksheet on a seperate page.
Question 1: Find the flaw in the following proof.
The sum of two odd integers is even.

Proof. Let x and y be odd integers. Since x is odd, there is an integer n such that $x=2 n+1$. Since y is odd, there is an integer $y=2 n+1$. So

$$
x+y=2 n+1+2 n+1=4 n+2=2(2 n+1)
$$

Since n is an integer, so is $2 n+1$. So by definition, $x+y$ is even.
Question 2: Show that Even + Odd $=$ Odd
Question 3: Show that if a is odd, then a^{2} is odd.
Question 4: Find the flaw in the following proof.
Every integer (Here, integer means non-decimal number) is odd.
Proof. Let x be an integer. Note that

$$
x=2\left(\frac{x}{2}\right)=2\left(\frac{x}{2}\right)-1+1=2\left(\frac{x}{2}-\frac{1}{2}\right)+1
$$

Let $k=\frac{x}{2}-\frac{1}{2}$. So then $x=2 k+1$.
Question 5: What are the factors of 1001? What are the prime factors of 1001 ? Remember, 1 isn't prime. You're allowed to use a calculator.
Question 6: Show that $x^{2}-4$ is Composite when $x \geq 4$.
Remark: We introduce the division algorithm. Given a, b which are non-decimal numbers, we can write $a=q b+r$ where q, r are non-decimal numbers and $0 \leq r<b$.

For example, if $a=14$ and $b=5$, then $q=2$ and $r=4$. Then, $14=2(5)+4$.
Why this is called an algorithm, I don't know. And while we will talk about this later, here's something cool.
a is composite is equivalent to saying that we can use the division algorithm to rewrite $a=q b$ with $r=0$ for some $2 \leq b<a$.
Why is this important? IDK. But it's pretty cool! Now, if you want, consider this: How can we use the division algorithm to say when a number is prime?

Answer 1: We let $x=2 n+1$ and $y=2 n+1$. But this means that $x=y$. See this issue? We need to use seperate variables to show that both are different odd numbers. So let $x=2 n+1$ and $y=2 m+1$.
Remember, n and m are some number so that we can write x and y as odd numbers. This small caveat I forgot to mention in my video.
Note: Interestingly, the claim, or what we are trying to prove is correct. Keep in mind that something can be true but a proof can be false, so this is why verifying our proofs are important.

Answer 2:

Proof. Let $x=2 k$ be even and $y=2 l$ be odd. Then,
$x+y=2 k+2 l+1=2(k+l)+1$. The final number is odd.

Answer 3:

Proof. Let $a=2 k+1$ be odd. Then:
$a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. The final number is odd.

Answer 4: $\frac{x}{2}$ is not a non-decimal number, or an integer.
To see this, try $x=2$. Then, $k=\frac{1}{2}$. But this is not a non-decimal number, or an integer, so the proof is false.

Answer 5: The factors of 1001 are: 1, 7, 11, 13, 77, 91, 143, 1001.
The prime factors are: $7,11,13$.

Answer 6:

Proof. Use the following algebraic identity:

$$
(x+y)(x-y)=x^{2}-y^{2}
$$

Then, when $y=4$, we have that:

$$
x^{2}-2^{2}=(x+2)(x-2)
$$

Then, we see that $1<(x-2) \leq(x+2)<x^{2}$, so by definition, $x^{2}-4$ is composite.

