Answers are found at the bottom of the worksheet on a seperate page.
Question 1: Consider the following function: $f: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}, f(x)=x^{2}$. Note: Here, we are telling you how x gets mapped. Another way to say this is $x \mapsto x^{2}$, or, x gets mapped to x^{2}.
Determine the following about the function above: Whether this is a function, Domain, Codomain, Range, Whether the function is injective, surjective, bijective or none. You don't have to prove your results.

Question 2: Consider the following function: $f: \mathbb{R} \rightarrow \mathbb{Q}, f(x)=x$, or, $x \mapsto x$.
Determine the following about the function above: Whether this is a function, Domain, Codomain, Range, Whether the function is injective, surjective, bijective or none. You don't have to prove your results.
Question 3: What is the set $A=(\mathbb{Z} \backslash \mathbb{N}) \cup\left\{\frac{1}{2}\right\}$?
Question 4: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}-1$. Find the inverse of this function, as you would in a calculus class.

While we didn't cover this in the videos, this is a warmup to our future exposure to inverses.
Remark: Let's say $A=\{1,2,3,4,5\}$, and $f: A \rightarrow A$. There are two interesting questions we can ask.
a: How many distinct functions are there? As in, what are all the ways we can map elements in A to itself?
b: How many of these functions are bijections? Or, maps to itself uniquely.
The answer to a: 5^{5}. 1 can map to 5 different elements, so 5 choices. 2 can map to 5 elements independent of 1 , so $5 \cdot 5=25$ choices. Then, 3 introduces 5 more choices, so 5^{3} until the fifth element where we end with 5^{5} choices.

The answer to $\mathrm{b}: 5!=120=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. The first element can map anywhere, so 5 choices. But the second element can't map to where the first element mapped, so $5 \cdot 4=20$ choices. Then, the third element can't map to where the first element or second element was mapped, so $20 \cdot 3=60$ choice, until we end with 120 choices.

This is a question that you might encounter in a field of mathematics called combinatorics, or the math of counting things. While this remark might be hard to understand, I hope it was interesting!

Answer 1:

Function: Yes
Domain: \mathbb{Z}
Codomain: $\mathbb{N} \cup\{0\}=\{0,1,2,3, \ldots\}$
Range: $\{0,1,4,9,16,25, \ldots\}$, or, the square numbers.
f is neither injective or surjective. Both 2 and -2 map to 4 so it fails to be injective, and 3 is not reached under the function.

Answer 2:

f isn't a function (don't worry, I made the same mistake when coming up with the question), since π doesn't map anywhere. So it doesn't make sense to ask about its properties.
If you want, change f so that $f: \mathbb{Q} \rightarrow \mathbb{R}$. Now, what properties does f have?

Domain: \mathbb{Q}
Codomain: \mathbb{R}
Range: \mathbb{Q}
f is injective but not surjective, as π isn't mapped to. We won't prove the injective claim.
Answer 3: $A=\left\{\ldots,-3,-2,-1,0, \frac{1}{2}\right\}$.
Answer 4: The way I find inverses is by changing x and y, and then resolving for y. So we get:

$$
\begin{aligned}
x & =y^{3}-1 \\
y^{3} & =x+1 \\
y & =\sqrt[3]{x+1}
\end{aligned}
$$

Thus, $f^{-1}=\sqrt[3]{x+1}$.

