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Recap: Induction

Last video, we learned about Induction with our best
friend, Benny the frog.

Recall our motivation: Induction is a tool to solve
problems. While we motivated induction with solving
closed forms, we can use induction in many ways.
Here’s an example.



Prime Factorization

Show that every natural number greater than 2 is either
a prime or can be factored into primes.

Before we prove this, let’s run some examples.



Examples

2 is prime. Good!

3 is prime. Good!

4 = 2 · 2, so it’s composed of prime factors.

5 prime, 6 = 3 · 2, so good.
Okay, it seems like the claim is true but induction might
not work to prove this, but it does! Let’s analyze our
problems and how to fix them.



Problem 1: Base Case

We need to show our claim for every natural number
greater than 2, but induction only works on base case
1?? How to solve??

Okay, clearly we just start at 2. But this gives us an
important insight: we can let our base case be whatever
we want!

This will be useful for later questions!



Problem 2: Induction Hypothesis

In induction, we only worry about jumping from one
lilypad to the next one. Or, assume our claim holds for
k and show it for k + 1.

But in this case, 4 relies on 2 being prime, so we need
more than one step back...

But this actually isn’t a problem! We’ll diagram it.



Diagram Time!

We start with lilypad 2. We know that lilypad 2 and 3
are covered, so let’s color those in.

2 3 4 5 6



Benny Can’t Jump

But here we see the dilemma. Benny can’t jump from
lilypad 3 to lilypad 4...

But wait! Benny can jump from lilypad 2 to lilypad 4!
And since he got to lilypad 2, since he definetely got to
3, there’s no issues!

So 4 is good to go!

2 3 4 5 6



5’s a Gimme

Let’s color in 5 since it’s prime. Then, we’ll tackle 6.

2 3 4 5 6



6 was scared of 7

Now, Benny can’t jump from either 4 or 5 to 6. But it
doesn’t matter, because he can jump from 2 and 3 to 6.
Yes, he needs multiple lilypads to cross that gap.

All that matters is this: Even if Benny needs multiple
lilypads from beyond the previous lilypad, it’s still fine
because we were able to get on all the previous lilypads!

2 3 4 5 6



Strong Induction

Enter Strong Induction. Strong Induction is Induction
but with the following change:

The induction hypothesis doesn’t just include lilypad k
but every lilypad before and including k. So we can use
multiple lilypads from anywhere before k.

And this doesn’t affect the truth of our proof! All we’re
using is all the previous knowledge we’ve gained from all
the lilypads, not just the last one!



Proving Prime Factorization
Now, let’s prove prime factorization for all n > 2 ∈ N
using Strong Induction! Namely, every natural greater
than 2 is either prime or factors into primes.

Proof. We start by considering our base case, k = 2. Since 2 is
prime, our base case holds.

Now we proceed with our inductive step. Assume that
every number from 2 to k is either prime or can be
factored into primes for some k ∈ N. Then, we’ll show
that k + 1 is either prime or can be factored into primes.

Some people like the following notation: Let P(k) be
the claim that k is prime or can be factored into primes
(in this case, our base case is P(2)). Then, our
induction hypothesis can be: Assume that
P(2), P(3), . . . , P(k) is true for some k ∈ N.
Show that P(k + 1) is also true.



Inductive Step

Proof. Continued.
Remember, in our induction hypothesis, we are allowing
all the lilypads before k to be part of our induction
hypothesis.

Now consider k + 1. If it’s prime, the claim holds, or
P(k + 1) is true. If k + 1 is not prime, then we can
divide it so that:
k + 1 = l · m for some 1 < l , m < k + 1. Since both l
and m are less than k + 1, we have m and l are both
either prime or can be factored into primes by our
induction hypothesis. Thus, k + 1 can be factored into
primes.

Or in other words, since P(m) and P(l) is true, we must
have that P(ml) = P(k + 1) is true.



Last But Not Least

Proof. Continued.
Since our inductive step is true, in combination with our
base case, every natural number is either prime or can
be factored into primes. Or, P(n) is true for all n ∈ N.

Here, I provided two ways you can think of the inductive
step. Either directly or using P(k) for different values of
k.

There’s actually a name for P(k). It’s called the
predicate. So for induction, you can either solve it
directly, or show that the predicate holds for all natural
numbers.

Remember, if you use the predicate path, you define the
predicate depending on the problem. I personally prefer
direct induction, so I’ll stick with that.



Midpoint Break

In our first problem, we adapted induction by changing
the base case and by strengthing our induction
hypothesis leading to strong induction. Interestingly,
both induction and strong induction have the same
strength, but strong induction gives us more
information.

But we can still adapt the tool of induction in another
way, which we’ll highlight in the next problem.



We Might Need Benny’s Friend Here...

Show that every number greater than 2 can be written
as a sum of 2s and 3s. For example,
41 = (11 · 3) + (4 · 2).

As always, let’s convince ourselves this is true by doing
examples.

2 and 3 are fine. 4 = 2 + 2. Good. 5 = 3 + 2. Good.
6 = 3 + 3 = 2 + 2 + 2 = 2 + 4. Good.
7 = 3 + 2 + 2 = 3 + 4 = 5 + 2. Good.
8 = 2 + 2 + 2 + 2 = 3 + 3 + 2 = 3 + 5 = 6 + 2. Good.

Okay, that’s a lot of information but do you see the
pattern?



Insight

We can write every n as (n − 2) + 2. But wait, (n − 2) is
only two lilypads back. So we’ll still need to use strong
induction, but there’s an issue in our induction step.

Intuitively, we can only go from lilypad k to lilypad
k + 2! So how are we gonna reach every lilypad?



More Diagrams???

Let’s put Benny on lilypad 2 and see where this goes.

· 3 4 5 6



This Reminds Me Of Leapfrog...

Benny jumps to lilypad 4.

2 3 · 5 6



This Reminds Me Of Leapfrog...

Benny jumps to lilypad 6.

2 3 4 5 ·



This Reminds Me Of Leapfrog...

Benny disappears off screen (don’t worry, he’s doesn’t
die off screen unlike a certain somebody from JJK...).

But who’s gonna deal with the odd numbers?

2 3 4 5 6



Tiffy... OMG, Benny!!!!!!!

Enter Tiffy. · *ribbit*

She’s gonna deal with the odd numbers!

2 3 4 5 6



Tiffy The Goat For Real For Real

Let’s put Tiffy on pad 3 and get her hopping.

2 · 4 5 6



Hop To The Beat!

2 3 4 · 6



Hop To The Beat!

2 3 4 5 6

Just like that, every lilypad is covered! Okay, let’s recap
what just happened.



The Big Idea

We noticed that our induction hypothesis doesn’t prove
the next case but the case after. Or in predicate terms,
P(k) ⇒ P(k + 2).

But with only one base case, we only hit the even
numbers.

So if we imagine our base case as frogs, one base case
(Benny) and its inductive step covers all the even
numbers, while the second base case (Tiffy) and its
inductive step cover all odd numbers.

Yes, this is a matter of base cases. So here’s the extra
thing we can change about induction: Multiple base
cases. Now, let’s prove this!



Proof!
Prove that every number greater than 2 can be written
as a sum of 2s and 3s.

Proof. We start with our base cases. Our first base case is 2
while our second base case 3. Clearly, both can be
written as a sum of 2s and 3s. Proceed with the
inductive step.

Assume that every number from 2 to k can be written
as a sum of 2s and 3s. Or, let ’k can be written as a
sum of 2s and 3s’ be our predicate. Then, if
P(2), P(3), . . . , P(k) is true for some k > 3 ∈ N. Show
that k + 1 can be written as a sum of 2s and 3s, or,
P(k + 1) is true.



Inductive Step

Proof. Continued.

We’ll prove our inductive step directly. We have:
k + 1 = (k − 1) + 2. By our induction hypothesis, k − 1
can be written as a sum of 2s and 3s, so clearly, k + 1
can also be written as a sum of 2s and 3s. Thus, our
inductive step holds and the proof is complete.



Why A Second Base Case?

What’s interesting is that it doesn’t seem clear why we
need a second base case. It seems claiming strong
induction should be fine so what’s the issue? Even
intuitively, we saw that we need a second base case, or
Tiffy, but where in the proof does that appear?

If we try to prove 3 using induction, we can’t use this
method since 3 − 2 = 1! While it’s super sneaky, the
reason for our second base case is to ensure that our
inductive step is performed on the odd numbers and by
extension, all numbers greater than 3.



This Is Why Intuition Is Important!

Intuition allows us to understand the small details that
some people might forget to ’remember’ when doing
proofs. So when we do our proofs, understanding is
important because it ensures we don’t forget crucial
steps or follow a recipe blindly and can’t tackle a
slightly harder/different problem.



A Small Detail

In all our induction proofs, in our inductive step, we say
assume the claim holds from some k ∈ N. This is the
same as saying Benny can reach lilypad k.

If we incorrectly assume that the claim holds for all
k ∈ N, that’s wrong because that’s the same as saying
Benny can reach every lilypad.

Apparently, this is a trap many people fall into, but if
you remember Benny, this shouldn’t be an issue. Just
be careful!



Recap!

That’s all there is to induction. Remember Benny and
the intricacies of lilypad jumping. Then, you’ll be fine!

We learned closed forms and the classic induction.
Then, we learned ways to adapt induction to solve our
problems by:

Changing where our base case starts.

Using every/many lilypad(s) before k and learning about
strong induction.

Having multiple base cases.


