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The Simplest Numbers

The simplest numbers are the counting numbers. We
call them the natural numbers. Or, all positive
non-decimal numbers.
We use the symbol N to denote this.

Definition
N = {1, 2, 3, 4, 5, 6, . . .}

Now, we add in some negatives and 0 so we can
subtract, and we get the integers, or the set of all
non-decimal numbers. We’ll call them integers from this
point on.

Definition
Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}



The Next Number Systems

In order to divide, we need to introduce ratios, or
fractions. This number system is called the rationals.

Definition
Q = {a

b : a, b ∈ Z and b ̸= 0}

There’s something we have to mention: We only
consider fractions in their simplest form when talking
about elements in Q. So, a

b is in their lowest or simplest
form (smallest denominator).
But what about π or

√
2? How do we add them in?

Well, we literally add them in and call this the set of all
numbers, the real numbers.
We use R to denote the set of all real numbers, or any
number we can think of, even values that can’t be
represented as a fraction.



Eventually Periodic

Write every number in their decimal form. Then, all
rationals eventually repeat. For example, 13

3 = 4.333 . . ..
But numbers in R don’t need to repeat. So, maybe you
can see how many numbers are in R but not in Q.



Prove That
√

2 is Irrational

Proof. Assume for the sake of contradiction that
√

2 is
irrational. Then, we can write

√
2 = a

b for some
a, b ∈ Z with b ̸= 0 where a

b is in their simplest form.

After squaring both sides, we get the following:
2 = a2

b2

Then, multiply by b2 on both sides.
2b2 = a2

So, a2 is even. Thus, a is even. Write a as 2k to get:
2b2 = (2k)2 = 4k2

Finally, divide by two on both sides to get:
b2 = 2k2



Here’s The Kicker

Proof. Continued.
But wait, then b2 is even so b is even. Thus, a

b couldn’t
have been in simplest form? How? Well, it must be that√

2 can’t be represented as a rational. So,
√

2 must be
irrational.

Wow. It’s beautiful, but tough. Since this was a short
one, I had to challenge you a bit in a different way.
While understanding the proof isn’t pivotal, if you do,
you’ll be able to tackle everything from this coruse.


