
An Introduction to Mathematical Proofs
Pigeonhole Principle

Who? Fahad Hossaini

When? Whenever You Watch

Pigeonhole Principle

Pigeonhole Principle

What’s The Point?

While the statement is super general and very intuitive,
it’s helpful in multiple ways.

First, we see that ’size’ plays a role when it comes to
the possibility of bijections between sets. We can never
form a bijection between a set with 9 elements and a set
with 10 elements.

Bijections Between Sets?

Let A, B be sets. If there exists some function f : A → B
such that f is a bijection, then we say that there’s a
bijection between A and B. Or, A and B are bijective.

Likewise, we can say A and B are injective/surjective
when there exists a function f : A → B that is
injective/surjective respectively.

’Size’

We use absolute values around sets to denote their
’size.’ So, if A = {1, 2, 4}, then |A| = 3.

Formally, the word we use is cardinality, or, the
cardinality of A is 3. There’s a reason we use cardinality
and not ’size’ which we’ll talk about in the next video.

Pigeonhole Principle And Cardinality

If A = {1, 2, 3, 4, 5} and B = {a, b, c, d}, then by the
Pigeonhole Principle (or PHP), there can’t be an
injective function from A to B.

Notice that: |A| > |B|.

Now consider a function from B to A. Clearly, such a
function can never be surjective.

In this case: |B| < |A|.

Or In Other Words

We notice the following:

If |A| ≤ |B|, then we can find an injective function from
A to B. Likewise, if |A| ≥ |B|, we can find a surjective
function from A to B.

Then, we see that if |A| = |B|, we can find a bijection
from A to B. And indeed, this logic works backward!

If we can find a bijection between A and B, we can
match up elements one-to-one in a unique way, so they
must have the same cardinality.

Okay, Back To PHP

That’s enough cardinality, let’s talk about some cool
PHP consequences.

I claim that I can come up with a program that
compresses any file by 5% and decompresses that file
back to the original.

Does such a program exist?

The Answer: No!

Proof.
Why? PHP! Assume for the sake of contradiction that
such a program exists. Then, consider the set of all files
of size 100x with D. They’re 2100x many possible files
of this size.

After compression, the files are now of size 95x and
therefore 295x many possible files of this size. Call this
set C .

Now, our contradiction. Our decompression algorithm
can’t map uniquely all the compressed files to the
decompressed files. Why? Since 295x < 2100x , we have
that |C | < |D| and no surjection can exist from C to D.
Thus, our decompression algorithm can’t exist so such a
compression machine can’t exist.

Here’s Another Cool One

Consider the following numbers:

647, 6472, 6473, . . . , 64710, 64711

Without any calculation, what can we say about the last
digits of all these numbers?

At least two of these numbers will share their last digit.

While we don’t know which numbers and which digit,
we have some bound. Some cap. Some limit. And while
this lower bound is much stricter and with some
elementary math, we can see exactly what these last
digits look like, we have some conditions.

Bounds

PHP is really good at finding some bound or limit.
While the bounds we develop is super primitive, we can
prove that bounds exist. Prove!

