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Q

We listed every element in Q last video.

Before we proceed with today’s topic, I’ll introduce you
to a cool technique to prove cardinality.



Abusing Bijections

Imagine the following way to list the rationals.
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The issue is we can’t map this sequence to the naturals,
because it goes to infinity both to the left and right.

However, we can map this sequence to the integers. Let
f : Z → Q and f (0) = 0

1 . Then, map in both directions.
So, f (−1) = −1

1 , f (−2) = −2
1 , f (1) = 1

1 , f (2) = 2
1 and

so on.

This is a bijection. So, |Q| = |Z|. But we know that
|Z| = |N|. Thus, |Q| = |N|.



Key Takeaway

We already showed that if f : A → B and g : B → C are
both bijective and h : A → C by h = g ◦ f , then h must
be bijective.

But now, we also notice that |A| = |B| by f , |B| = |C |
by g and |A| = |C | by h.

Thus, if f : A → B is bijective, to show that some other
set C has property: |C | = |A|, it’s sufficient to show
that |C | = |B|.



Okay, Now Practical

Our end goal is find |R|.

We’ll show that |R| = |(0, 1)|, the open interval.

Consider the function f (x) = arctan(x). f is bijective
when f : R → (−π

2 , π
2 ). This depends on tan(x) being

bijective on f −1 : (−π
2 , π

2 ) → R.

You can rigourously prove that the above function(s) are
bijective. We’ll take it as granted. You can do it in the
worksheets [insert rofl emoji].

Now, we’ll change f . If f (x) = 2
π arctan(x), then f is

bijective when f : R → (−1, 1). You can also prove this.

This is a very interesting property...



Scaling Functions

We’ll prove the claim from the previous slide.

If f : R → (a, b) is bijective, then c · f : R → (ca, cb) is
also bijective, where c · f multiplies f by c. For
example, if f (x) = y , then c · f (x) = cẏ .

You should be able to prove this. Try to figure out the
steps. We’ll prove it in the next two slides.



Scaling Functions Proof

If f : R → (a, b) is bijective, then c · f : R → (ca, cb) is
also bijective, where c · f multiplies f by c. For
example, if f (x) = y , then c · f (x) = cẏ .

Proof. Regarding injectivity, let x1 ̸= x2 ∈ R. Let y1 = f (x1)
and y2 = f (x2). Then,

x1 ̸= x2

f (x1) ̸= f (x2) Since f is bijective
y1 ̸= y2

c · y1 ̸= c · y2

c · f (x1) ̸= c · f (x2)



Scaling Functions Proof

If f : R → (a, b) is bijective, then c · f : R → (ca, cb) is
also bijective, where c · f multiplies f by c. For
example, if f (x) = y , then c · f (x) = cẏ .

Proof. Continued.
Regarding surjectivity, let y ∈ (ca, cb). We also know
that y

c ∈ (a, b). Then, let x = y
c . We have:

c · f (x) = c · y
c = y .

Thus, c · f (x) is bijective.



Translating Functions

So now, f (x) = 2
π arctan(x), which is bijective when

f : R → (−1, 1). For our future sanity, let
f (x) = 4

π arctan(x), which is bijective when
f : R → (−1

2 , 1
2)

Now, we’ll change f again. Let f (x) = 4
π arctan(x) + 1

2 .
This is bijective when f : R → (0, 1).

Once again, I’ll leave this for you to prove. It’s very
similar to the proof for scaling functions.



Conclusions

1. When bijective functions go from the reals to an
interval, we can scale and translate the function and as
long as we accordingly change the interval, the function
stays bijective.

2. Since f (x) = 4
π arctan(x) + 1

2 is bijective when
f : R → (0, 1), we have that: |R| = |(0, 1)|.

So, all we need to do is come up with a way to count
every number between 0 and 1, and we’ll have that
(0, 1) is countable.



Why The Reals Are Unique

The issue is this: Every real number between 0 and 1
can be written to have countably many decimals. For
example, 1

5 = 0.200000000 . . .

We could have patterns that don’t repeat, for example,
0.682908471266237017865678424767956 . . . ∈ (0, 1)
and we don’t know what the rest beyond the dots will
look like.

But, you know what, let’s try!



The Idea

We want to show that |N| = |(0, 1)|.

Assume that we can list every number in (0, 1). We’ll
have to figure out how to do this formally later, but let’s
continue!

Then, let y1 be our first number. For example, it could
be 0.325701756104562 . . . And let y2 be our second
number. For example, it could be 0.191111111 . . .

Then, define f : N → (0, 1) by f (n) = yn. This should
be injective as long as we don’t allow duplicates.

But regarding surjectivity...



A Problem...

We’re going to construct an x ∈ (0, 1).

Let x1 be the first digit of y1 after the decimal plus 1.
For example, if y1’s first digit is 3, then x1 = 4. In the
case that a digit is 9, we go back to 0. Let x2 be the
second digit of y2 after the decimal plus 1. So, x2 = 0.
Do this for every natural number. Thus, xn is the nth
digit of yn after the decimal plus 1.

Then, let x = 0.x1x2x3 . . .. This is not multiplication!
This is concatenation! So, the first digit after the
decimal of x is x1, the second digit after the decimal is
x2 and so on.

Do you see why x is unique?



A Visual

y1 = 0.325701756104562 . . .

y2 = 0.191111111111111 . . .

y3 = 0.708950345327463 . . .

y4 = 0.091095468354291 . . .

y5 = 0.874157567896514 . . .

y6 = 0.678981384712222 . . .

y7 = 0.463724987532496 . . .

y8 = 0.675268456894654 . . .

y9 = 0.197846352794412 . . .

... =
...

x = 0. 4 0 9 1 6 2 0 6 3 · · ·



What’s Unique About x?

Let’s compare x to the rest of our list.

Clearly, x ̸= y1 as x1 ̸= the first digit after the decimal
of y1. Remember, if any digit is different, then the
number can never be equal.

But we also have that x ̸= y2 because of x2. Same with
y3 and so on.

So, x ̸= yn for all n ∈ N.

Wait a second... we just made a new number in (0, 1)
that wasn’t in our original list...



Uhhhhh.......................

Hold.

Didn’t we assume every number in (0, 1) is in our list?
And then we made a new number that wasn’t listed? So
which natural number maps to x?

None of them...

Wait, didn’t we just prove that f can never be
surjective?



Wow...

We just showed that |N| < |(0, 1)| = |R|. What we did
was a proof by contradiction. Essentially,

Proof. Assume for the sake of contradiction that f : N → (0, 1)
is bijective. Then, we can produce x ∈ (0, 1) so that
f (n) ̸= x for every n ∈ N (remember, f maps to yn but
x ̸= yn for every natural n).

Thus, f can never be surjective, so |N| < |(0, 1)|.
We can never enumerate or list every real number, let
alone every number between 0 and 1.



The Gravity Of The Situation

We just showed that N and R have different cardinality.
But both are infinite?

We proved that there are different sizes of infinity.

Just think about that for a second. We can find a larger
infinity. An unlistable, unenumerable, uniterable,
uncountable infintity.



|R|

We say that R has uncountable cardinality.



Cantor’s Diagonal Argument

The technique we used is called Cantor’s Diagonal
Argument.

No one believed him when he published his proof
claiming that there were different sizes of infinity. But,
it’s commonly accepted as fact nowadays.



Infinite PHP Part 2

If we have countably many pigeonholes but uncountably
many pigeons, what can we deduce?

We can deduce the following: At least one pigeonhole
will have uncountably many objects.

intuition: Countable unions of countable sets is
countable, say S1 ∪ S2 ∪ S3 ∪ · · · where |Sn| is countable
for all n ∈ N.

We can arrange the sets in a grid pattern and dovetail.
First row is S1, second row is S2, third row S3 and so in.
Remove duplicates and bam, countable.

Thus, some Si must have uncountable cardinality.



That’s It For This Unit

One Last Note: I want you understand the severity of
this.

As humans, we fail to comprehend large things. A
number doesn’t do justice to the size of the universe.
Likewise, it doesn’t do justice to the speed of light.

If we fail to comprehend large, what chance do we have
to understand countable infinity? What about
uncountable?

I acknowledge the fact that I’ll never be able to wrap my
head around this fact. But despite that, it’s beautiful.

If nothing I’ve shown or taught sticks with you,
remember just this one: Math is beautiful, even though
we can’t comprehend it in its entirety.


